Numerical investigation of the interaction of two electrolytic drops under an external electric field

Shyam Sunder Yadav Assistant Professor, Mechanical Engineering

BITS Pilani, India March 25, 2021

Interaction of charged droplets

Drop-Interface and Drop-Drop Interactions

Figure: Computational domain for (a) Drop-Interface, (b) Drop-Drop interactions

Interaction of charged droplets

Codes used in the current study

• Two different numerical techniques are used

- Finite Differences + CLSVOF method
 - * Developed by my advisor and his advisor!
 - ★ I added the charge advection using VOF
- Finite Element + Phase field method
 - ★ Developed by Gaute Linga
 - ★ Based on FENICS, Code is called BERNAISE
 - * https://github.com/gautelinga/BERNAISE

Governing equations in CLSVOF based code

- Navier-Stokes equation:
 - $\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla \rho + \nabla \cdot \left[\mu (\nabla \mathbf{v} + \nabla \mathbf{v}^{\mathsf{T}}) \right] + \rho \mathbf{g} + \mathbf{f}_{v}^{\gamma} + \mathbf{f}_{v}^{\mathsf{E}}$ $\nabla \cdot \vec{U} = 0$
- Interface advection:
 - $\frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = 0$ • $\frac{\partial F}{\partial t} + \mathbf{v} \cdot \nabla F = 0$
- Equations for quasi-electrostatics
 - $\nabla \cdot \epsilon_0 \epsilon \vec{E} = q_v$ $\mathbf{f}_v^E = q_v \mathbf{E} - \frac{1}{2} \epsilon_0 E^2 \nabla \epsilon$
 - $\frac{\partial q_v}{\partial t} + \mathbf{v} \cdot \nabla q_v + \nabla \cdot \sigma \mathbf{E} = 0$
- Surface tension forces

•
$$\mathbf{f}_{v}^{\gamma} = \gamma \kappa \hat{n} \delta_{s}$$

• $\hat{n} = -\frac{\nabla \phi}{|\nabla \phi|}$

Numerical Schemes in CLSVOF based code

Discretization summary

- Grid: Staggered grid, (Harlow and Welch).
- Viscous terms: Second order accurate central difference scheme.
- Convective terms: Second order ENO scheme, (Harten et al.).
- Surface tension: Continuum surface force model, (Brackbill et al).
- Electric forces: Continuum electric force model, (Tomar et al).
- Temporal term: First order accurate explicit Euler method.
- **Pressure**: Second order accurate Projection method, (Chorin).
- Interface capturing: CLSVOF algorithm, (Sussman and Puckett) .
- Time step: Variable time step is used:
 - **CFL** criterion : $\Delta t \leq cfl \frac{\Delta x}{u_{max}}$
 - Viscous time scale : $\Delta t \leq \frac{\rho \Delta x^2}{4\mu}$
 - Capillary time scale : $\Delta t \leq \left[\frac{(\rho_1+\rho_2)\Delta X^3}{\gamma}\right]^{\frac{1}{2}}$
 - Charge Relaxation time scale : $\Delta t \leq \frac{\epsilon_0 \epsilon}{\sigma}$

Governing equations in BERNAISE Based on FENICS

- Two-phase electrokinetic flows are described by the coupled problem of solute transport, fluid flow and electrostatics
 - $\stackrel{\partial}{\partial t} \rho(\phi) \vec{U} + \nabla \cdot \rho(\phi) \vec{U} \vec{U} \nabla \cdot [2\mu(\phi)\mathbb{D} + \vec{U}\rho'(\phi)M(\phi)\nabla g_{\phi}] + \nabla p = -\phi \nabla g_{\phi} \sum c_j \nabla g_{c_j}$
 - $\nabla \cdot \vec{U} = 0$
 - $\blacktriangleright \frac{\partial c_j}{\partial t} + \vec{U} \cdot \nabla c_j \nabla \cdot \left(\mathcal{K}_j(\phi) c_j \nabla g_{c_j} \right) = 0$
 - $\blacktriangleright \nabla \cdot (\epsilon_0 \epsilon \vec{E}) = \rho_e$
 - $[2\mu \mathbb{D} p'\mathbb{I} + \gamma\kappa\mathbb{I} + \epsilon_0\epsilon\vec{E}\vec{E} \frac{1}{2}\epsilon_0\epsilon E^2\mathbb{I}] \cdot \hat{n} = 0$
 - $\blacktriangleright \ \frac{\partial \phi}{\partial t} + \vec{U} \cdot \nabla \phi \nabla \cdot (M(\phi) \nabla g_{\phi}) = 0$
- Chemical potential of species c_j and the phase field ϕ
 - $g_{c_j}(c_j, \phi) = \alpha'(c_j) + \beta_j(\phi) + z_j V$
 - For dilute solutions: $\alpha(c) = c(\log(c) 1)$
 - $g_{\phi} = \frac{\partial f}{\partial \phi} \nabla \cdot \frac{\partial f}{\partial \nabla \phi} + \sum \beta'_{j}(\phi)c_{j} \frac{1}{2}\epsilon'(\phi)|\nabla V|^{2}$
 - $f(\phi, \nabla \phi) = \frac{3\sigma}{2\sqrt{2}} \left[\frac{\epsilon}{2} |\nabla \phi|^2 + \epsilon^{-1} W(\phi) \right]$
 - $W(\phi) = \frac{(1-\phi^2)^2}{4}$

• Phase field mobility: $M(\phi) = \epsilon M_0$ or $M(\phi) = M_0 * \max(1 - \phi^2)$

CLSVOF based simulations

Drop-Drop, Situation before contact

Figure: Efield before contact

Figure: Charge & Eforce before contact

CLSVOF based simulations

Drop-Drop, Situation at contact

Figure: Efield at contact

Figure: Charge & Eforce at contact

CLSVOF based simulations

Drop-Drop, Situation after contact

Figure: Efield after contact

Figure: Charge & Eforce after contact

Situation before contact

Figure: Efield before contact

Figure: Charge & Eforce before contact

Situation at contact

Figure: Efield at contact

Figure: Charge & Eforce at contact

Situation after contact

Figure: Efield after contact

Figure: Charge & Eforce after contact

Drop-Interface, Greater velocity after contact

Figure: Velocity before contact

Figure: Velocity after contact

Distribution of charged species

3.6e+02 300 Negitive charge specie ve charge speci 250 250 200 200 150 150 100 - 50 -4.1e+00 3.6e+02 300 e charae specie Negitive charge specie 250 250 200 150 - 100 - 50 -4.1e+00

• Just before contact

Initial

tion

distribu-

Distribution of charged species

Distribution of charged species

Velocity distribution in the domain

Shyam Sunder Yadav Assistant Professor, MNumerical investigation of the interaction of t

Thank you for your attention. Questions...