Reduced order methods for optimal flow control: FEniCS-based applications

Maria Strazzullo

mathLab, Mathematics Area, SISSA International School for Advanced Studies, Trieste, Italy

26 March 2021

FEniCS 2021

Motivations

Starting Point Reduced Order Methods (ROMs) for parameterized Optimal Flow Control Problems (OFCPs) in environmental sciences

PDEs-based Several simulations for different values of physical and/or geometrical parameters (Uncertainty Quantification, Parameter Estimation...)

OFCPs

DATA-based

Scattered expensive and difficult to collect complex to interpret

By Dan Copsey (DanCopsey1 at English Wikipedia) — Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=1692219

Motivations

Starting Point Reduced Order Methods (ROMs) for parameterized Optimal Flow Control Problems (OFCPs) in environmental sciences

ROMs

PDEs-based Several simulations for different values of physical and/or geometrical parameters (Uncertainty Quantification, Parameter Estimation...) **OFCPs DATA-based** Scattered expensive and difficult to collect complex to interpret

By Dan Copsey (DanCopsey1 at English Wikipedia) — Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=1692219

The Optimal Control Pipeline

Outline:

- 1. Problem Formulation
- 2. Ideas behind ROMs
- 3. Advanced Applications
 - Shallow Waters Equations (SWE)
 - Steering Bifurcations
 - Uncertainty Quantification (UQ)

Advisors:

Prof. Gianluigi Rozza (SISSA) Dr. Francesco Ballarin (UNICATT)

Collaborators:

Prof. Rob Stevenson (UvA) Giuseppe Carere (UvA) Dr. Federico Pichi (SISSA/EPFL)

Problem Formulation

$$\min_{(y,u)\in\mathcal{Y}\times\mathcal{U}} J(y,u;\boldsymbol{\mu}) := \min_{(y,u)\in\mathcal{Y}\times\mathcal{U}} \frac{1}{2} \int_{0}^{T} \|y(\boldsymbol{\mu}) - y_{d}(\boldsymbol{\mu})\|_{Y(\Omega_{OBS})}^{2} dt + \int_{0}^{T} \frac{\alpha}{2} \|u(\boldsymbol{\mu})\|_{U(\Omega_{u})}^{2} dt$$

$$\operatorname{such that} \quad \mathcal{E}(y,u;\boldsymbol{\mu}) = 0$$

$$(\operatorname{DIM} = 3\mathcal{N}) \begin{cases} D_{y}\mathcal{L}((y,u,p);y_{d},\boldsymbol{\mu})[\omega] = 0 & \forall \omega \in \mathbb{Y}, \\ D_{u}\mathcal{L}((y,u,p);y_{d},\boldsymbol{\mu})[\kappa] = 0 & \forall \kappa \in \mathbb{U}, \\ D_{p}\mathcal{L}((y,u,p);y_{d},\boldsymbol{\mu})[\zeta] = 0 & \forall \zeta \in \mathbb{Y}. \end{cases}$$

$$\operatorname{Linear}_{\text{Non-linear}}_{\text{Time-dependent}}$$

Optimal Control is a very powerful mathematical tool

- more reliable solutions
- great versatility

However it is costly (based on the solution of three equations)

PDEs

Graetz Flows (temperature) Advection Diffusion (pollutant) Shallow Waters (coastal management) Navier-Stokes (haemodynamics)

Controls

Boundary, Part of the domain, the whole domain, forcing terms... Control **changes** the usual behaviour of the solution.

Problem Formulation

$$\begin{split} \min_{(y,u)\in\mathcal{Y}\times\mathcal{U}} J(y,u|\boldsymbol{\mu}) &:= \min_{(y,u)\in\mathcal{Y}\times\mathcal{U}} \frac{1}{2} \int_{0}^{T} \|y|\boldsymbol{\mu}) - y_{d}(\boldsymbol{\mu})\|_{Y(\Omega_{OBS})}^{2} dt + \int_{0}^{T} \frac{\alpha}{2} \|u|\boldsymbol{\mu}\|_{U(\Omega_{u})}^{2} dt \\ & \text{such that} \quad \mathcal{E}(y,u|\boldsymbol{\mu}) = 0 \\ (\text{DIM} = 3\mathcal{N}) \begin{cases} D_{y}\mathcal{L}((y,u,p);y_{d},\boldsymbol{\mu})[\omega] = 0 & \forall \omega \in \mathbb{Y}, \\ D_{u}\mathcal{L}((y,u,p);y_{d},\boldsymbol{\mu})[\kappa] = 0 & \forall \kappa \in \mathbb{U}, \\ D_{p}\mathcal{L}((y,u,p);y_{d},\boldsymbol{\mu})[\zeta] = 0 & \forall \zeta \in \mathbb{Y}. \end{cases} \quad \text{Linear} \\ & \text{Non-linear} \\ & \text{Time-dependent} \end{cases}$$

PDEs

Graetz Flows (temperature) Advection Diffusion (pollutant) Shallow Waters (coastal management) Navier-Stokes (haemodynamics)

Controls

Boundary, Part of the domain, the whole domain, forcing terms... Control **changes** the usual behaviour of the solution.

Optimal Control is a very powerful mathematical tool

- more reliable solution
- great versatility

However it is **costly** (based on the solution of three equations) **most of all in a parametrized setting** **ROMs**

Exploit the parametric structure of the problem

Ideas behind ROMs

Explore the solutions **snapshots** and how they change with respect to the parameter

Ideas behind ROMs

Explore the solutions **snapshots** and how they change with respect to the parameter

use μ

Ideas behind ROMs

Explore the solutions **snapshots** and how they change with respect to the parameter

How do you use RBniCS?

Example of Steady Coercive State Equation

class EllipticOptimalControl(EllipticOptimalControlProblem):

Default initialization of members def __init__(self, V, **kwargs): # Call the standard initialization EllipticOptimalControlProblem.__init__(self, V, **kwargs) # ... and also store FEniCS data structures for assembly assert "subdomains" in kwaros assert "boundaries" in kwargs self.subdomains, self.boundaries = kwargs["subdomains"], kwargs["boundaries"] vup = TrialFunction(V)(self.v, self.u, self.p) = split(vup) zvq = TestFunction(V)(self.z, self.v, self.q) = split(zvq) self.dx = Measure("dx")(subdomain data=subdomains) self.ds = Measure("ds")(subdomain data=boundaries) # Regularization coefficient self.alpha = 0.01 # Desired state self.y d = Constant(1.0) # Customize linear solver parameters self. linear solver parameters.update({ "linear solver": "mumps" })

In the class you define the parameters multiplied by the various forms defined as in FEniCS

Simple modifications for more complicated problems or to use other algorithms # 1. Read the mesh for this problem
mesh = Mesh("data/mesh1.xml")
subdomains = MeshFunction("size_t", mesh, "data/mesh1_physical_region.xml")
boundaries = MeshFunction("size_t", mesh, "data/mesh1_facet_region.xml")

2. Create Finite Element space (Lagrange P1)

scalar_element = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
element = MixedElement(scalar_element, scalar_element, scalar_element)
V = FunctionSpace(mesh, element, components=["y", "u", "p"])

3. Allocate an object of the EllipticOptimalControl class

elliptic_optimal_control = EllipticOptimalControl(V, subdomains=subdomains, boundaries=boundaries)
mu_range = [(1.0, 3.5), (0.5, 2.5)]
elliptic_optimal_control.set_mu_range(mu_range)

4. Prepare reduction with a reduced basis method

pod_galerkin_method = PODGalerkin(elliptic_optimal_control)
pod_galerkin_method.set_Nmax(10)

5. Perform the offline phase

lifting_mu = (1.0, 1.0)
elliptic_optimal_control.set_mu(lifting_mu)
pod_galerkin_method.initialize_training_set(100)
reduced_elliptic_optimal_control = pod_galerkin_method.offline()

6. Perform an online solve

online_mu = (2.0, 2.)
reduced_elliptic_optimal_control.set_mu(online_mu)
reduced_elliptic_optimal_control.solve()
reduced_elliptic_optimal_control.export_solution(filename="online_solution")
print("Reduced_output for mu =", online_mu, "is", reduced_elliptic_optimal_control.compute_output())

How do you use RBniCS?

Example of Steady Coercive State Equation

class EllipticOptimalControl(EllipticOptimalControlProblem):

Default initialization of members def __init__(self, V, **kwargs): # Call the standard initialization EllipticOptimalControlProblem.__init__(self, V, **kwargs) # ... and also store FEniCS data structures for assembly assert "subdomains" in kwargs assert "boundaries" in kwargs self.subdomains, self.boundaries = kwargs["subdomains"], kwargs["boundaries"] vup = TrialFunction(V)(self.v, self.u, self.p) = split(yup) zvq = TestFunction(V)(self.z, self.v, self.q) = split(zvq) self.dx = Measure("dx")(subdomain data=subdomains) self.ds = Measure("ds")(subdomain data=boundaries) # Regularization coefficient self.alpha = 0.01 # Desired state self.y d = Constant(1.0) # Customize linear solver parameters self. linear solver parameters.update({ "linear solver": "mumps" })

In the class you define the parameters multiplied by the various forms defined as in FEniCS

Simple modifications for more complicated problems or to use other algorithms # 1. Read the mesh for this problem
mesh = Mesh("data/mesh1.xml")
subdomains = MeshFunction("size_t", mesh, "data/mesh1_physical_region.xml")
boundaries = MeshFunction("size_t", mesh, "data/mesh1_facet_region.xml")

2. Create Finite Element space (Lagrange P1)

scalar_element = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
element = MixedElement(scalar_element, scalar_element, scalar_element)
V = FunctionSpace(mesh, element, components=["y", "u", "p"])

3. Allocate an object of the EllipticOptimalControl class

elliptic_optimal_control = EllipticOptimalControl(V, subdomains=subdomains, boundaries=boundaries)
mu_range = [(1.0, 3.5), (0.5, 2.5)]
elliptic_optimal_control.set_mu_range(mu_range)

4. Prepare reduction with a reduced basis method

pod_galerkin_method = PODGalerkin(elliptic_optimal_control)
pod_galerkin_method.set_Nmax(10)

5. Perform the offline phase

lifting_mu = (1.0, 1.0) elliptic_optimal_control.set_mu(lifting_mu) pod_galerkin_method.initialize_training_set(100) reduced_elliptic_optimal_control = pod_galerkin_method.offline()

6. Perform an online solve

" online_mu = (2.0, 2.)
reduced_elliptic_optimal_control.set_mu(online_mu)
reduced_elliptic_optimal_control.solve()
reduced_elliptic_optimal_control.export_solution(filename="online_solution")
print("Reduced output for mu =", online_mu, "is", reduced_elliptic_optimal_control.compute_output()

Coastal Height Management

Minimisation of

$$\frac{1}{2}\int_{0}^{T}\int_{\Omega}(h-h_{d}(\mu_{3}))^{2}dxdt + \frac{1}{2}\int_{0}^{T}\int_{\Omega}(\boldsymbol{v}-\boldsymbol{v}_{d}(\mu_{3}))^{2}dxdt + \frac{\alpha}{2}\int_{0}^{T}\int_{\Omega}\boldsymbol{u}^{2}dxdt$$

constrained to

$oldsymbol{v}_t + \mu_1 \Delta oldsymbol{v} + \mu_2 (oldsymbol{v} \cdot abla) oldsymbol{v} + g abla \eta - oldsymbol{u} = 0$	in $\Omega \times [0,T]$,
$h_t + \operatorname{div}(\eta \boldsymbol{v}) = 0$	in $\Omega \times [0,T]$,
$oldsymbol{v}=oldsymbol{v}_0$	on $\Omega \times \{0\}$,
$h = h_0$	on $\Omega \times \{0\}$,
v=0	on $\partial \Omega \times [0,T]$.

GOAL: recover parametrized desired height and velocity profiles with distributed control

Straightforward implementation in RBniCS with standard modifications of Nonlinear problems classes
$$\begin{split} [0,T] &= [0,0.8],\\ \Omega &= [0,10] \times [0,10],\\ \alpha &= 10^{-5},\\ \Delta t &= 0.1. \end{split}$$

Coastal Height Management

[Strazzullo, Ballarin, Rozza, POD-Galerkin Model Order Reduction for Parametrized Nonlinear Time Dependent Optimal Flow Control: an Application to Shallow Water Equations. *Submitted*, 2021] Errors ~ 1e-4, Speedup ~ 30 ROM vs FE dim = 270 vs 94'016.

Advanced Applications

Optimal control + Bifurcations in Navier-Stokes:

- Does optimal control affect the system?
- Does optimal control change stability?
- Does it change the stability analysis?
- What is the most "natural" configuration?

Optimal control + Uncertainty Quantification:

- Input-output relation?
- Weighted-POD
- More knowledge is better (less basis need)

[Pichi, Strazzullo, Ballarin, Rozza, Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier-Stokes equations with model order reduction. *Submitted*, 2020]

[Carere, Strazzullo, Ballarin, Rozza, Stevenson, Weighted POD-reduction for parametrized PDE-constrained Optimal Control Problems with random inputs and its applications to environmental sciences *Submitted*, 2021]

Conclusions

ROMs and OCPs

- Great mathematical tool to reach a desired configuration
- Expensive to solve
- RBniCS and multiphenics application to OFCPs
 - great versatility
 - \circ simple to code

Applications

- POD for nonlinear time-dependent problems (SWEs)
- OFCPs and bifurcations
- OFCPs and UQ

Acknowledgements

European Union Funding for Research and Innovation -- Horizon 2020 Program -- in the framework of European Research Council Executive Agency: Consolidator Grant H2020 ERC CoG 2015 AROMA-CFD project 681447 ``Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics''.

https://www.rbnicsproject.org/

Thank you for your attention!