
Explicit Dual Space Representation in UFL

India Marsden1, David A. Ham2 and Reuben Nixon-Hill2,3

March 2021
1Department of Computing, Imperial College London
2Department of Mathematics, Imperial College London
3Science and Solutions for a Changing Planet DTP, Grantham Institute for Climate Change and the Environment,
Imperial College London

1

Context

UFL provides an intuitive way to represent mathematical forms
in code.
In particular, it is able to represent function spaces, finite
elements within function spaces and functions on these
spaces, among other things.

2

Problem

Typically, operations such as assemble are applied to the
defined forms in UFL. Doing this results in objects that are not
within UFL.

This means that the language is not closed.

element = F in i teE lement (” Lagrange ” , t r i ang le , 1)
u = T r i a l Func t i on (element)
v = TestFunct ion (element)
f = Coe f f i c i e n t (element)

a = (u*v − inner (grad (u) , grad (v))) * dx
L = f * v * dx
res = assemble (a)
res2 = assemble (L)

3

Examples of the problem

Operator Composition Where τ(u) is an external operator:

grad(u) · τ(u) · grad(v) ∗ dx

Interpolation Interpolation is not first class

interp(e,u) ∗ v ∗ dx

Adjoint Forward Operations

action(interp∗(ê,u), adjoint(u ∗ v ∗ dx))

Composing Assembled forms

assemble(v ∗ dx+ assemble(e ∗ dx))

4

Dual Space

These operations depend on objects in the dual to the
function space, the space of bounded linear functionals on V:

V∗ = V→ R

An example of an operation on a dual space is the Dirac Delta
functional (V∗ → R), ie point evaluation:

δx(v) = v(x)

5

Dual Basis

A function space can be represented by its (primal) basis. A
function in the space is then a set of coefficients of that basis:

v = viϕi ∈ V

A dual space can be similarly represented by dual basis
functions, ϕ∗ ∈ V→ R. Call the set of coefficients of a dual
space a cofunction:

u = uiϕ∗
i ∈ V

∗

Writing u(v) would be evaluation of the dual basis and result
in a scalar.

6

1-Forms

In UFL, a 1-form represents a mathematical object with one
unknown,such as below, which we can write in terms of the
basis:

h(v) =
∫
Ω
v dx =

∫
Ω
ϕi dx vi

=

∫
Ω
ϕi dx Iijvj =

∫
Ω
ϕi dx ϕ∗

i (ϕj)vj

=

∫
Ω
ϕi dx ϕ∗

i (vjϕj)

=

∫
Ω
ϕi dx ϕ∗

i (v)

Using the property ϕ∗
i (ϕj) = δij and the linearity of the dual

basis.

7

1-Forms

Therefore, we can see that 1-forms can be represented as
cofunctions with coefficients:

hi =
∫
Ω
ϕi dx

h = hiϕ∗

This is a cofunction, an object in the dual space of V.
Computationally, we write:

L = v * dx
obj = assemble (L)

Obviously, obj is not a current UFL object.

8

Interpolation

Define interpolation from a space U to a space V as the
operator:

interp(u, v∗) : U→ V

We can write this as a form:

U× V∗ → R

As V = V∗∗ = V∗ → R. Then, taking the adjoint of this form we
get:

V∗ × U→ R = V∗ → U∗

which matches the expectation of linear operators.

9

Interpolation

Seeing interpolation as a function, we have the first argument
as u ∈ U and the second v∗ ∈ V. Interpolation is dual
evaluation of v∗:

interp(u, v∗) = v∗(u)

v∗ is termed a coargument, and in code would be:

v_s ta r = TestFunct ion (V . dual ())

Introducing Cofunctions makes the adjoint behave correctly.

10

Draft Additions

With these draft additions, users will be able to write code
such as:

V = FunctionSpace (domain , element)
v = TestFunct ion (V)
V_dual = V . dual ()
L = v * dx
obj = assemble (L)
a = Cofunct ion (V)
res = a + obj

where res would be a valid operation and V_dual is the
function space that is dual to V.

11

Further Implications

This change will need to be propagated into the
implementation of assemble and other similar operations.
This includes attaching data to these objects and adapting the
implementations to take into account pre-assembled sections.

12

