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Motivation

PDEs are often dependent on unknown (or difficult to measure)
parameters associated with physical systems and can be estimated via
an inverse problem

Inverse problems are often-illposed: there’s not enough data to
recover the parameter

Regularization selects one solution among many possible solutions

Non-smooth regularization reinforces certain ”nice” properties in
solutions: TV enforces sharp edges

ADMM provides a natural way of splitting these inverse problems into
smaller problems.

I The subproblems related to the PDEs can be solved efficiently using
INCG, which requires a smooth objective term

I The term related to the regularization can be solved for separately
using other proximal methods

FEniCS is used for efficient discretization of these variational problems
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ADMM Description

Equality between solutions of subproblems is reinforced with a
consensus term

ADMM will only reach moderate accuracy in a few iterations and
requires many following iterations for high-precision convergence1

This is sufficient for most large-scale applications including
I Machine learning
I Continuum mechanics2

I Imaging3

1
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,Distributed Optimization andStatistical Learning via the

Alternating Direction Method of Multipliers, Foundation andTrends in Machine Learning, Vol. 3, No. 1 (2010).
2

D. Gabay and B. Mercier,A dual algorithm for the solution of nonlinear variational problems via finite element
approximations, Computers and Mathematics with Applications, Vol. 2,No. 1 (1976)

3
Y. Wang, J. Yang, W. Yin, and Y. Zhang,A New Alternating Minimization Algorithm forTotal Variation Image

Reconstruction, SIAM Journal on Imaging Sciences, (2007)

Luke Lozenski Consensus ADMM for Inverse Problems FEniCS Conference 3 / 22



Setting

Consider the minimization problem

min
m∈M,

L(m) +R(m)

M is a possibly infinite-dimensional Hilbert space.

L :M 7→ R is twice differentiable, may be expensive to evaluate

R :M 7→ R is assumed convex and non-smooth

Introduce a consensus variable z ∈M

min
m,z∈M,

L(m) +R(z),

s.t. m − z = 0
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Consensus ADMM

We introduce the augmented Lagrangian for some ρ > 0

Lρ(m, z , y) = L(m) +R(z) + 〈y ,m − z〉+
ρ

2
||m − z ||2

Algorithm 1: Consensus ADMM

Begin with starting points (m0, z0, y0)
while While convergence criterion is not met do

mk+1 = argminm Lρ(m, zk , yk)
zk+1 = argminz Lρ(mk+1, z , yk)
yk+1 = yk + ρ(mk+1 − zk+1)

end

4

4
L. Lozenski, U. Villa, ”Consensus ADMM for Inverse Problems Governed by Multiple PDE Models”, in preparation 2021
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Inverse problems governed by PDEs

Goal: Estimate a parameter m given a measurement d ∈ D where

d = F(m) + e,

F is the composition of a PDE solver and observation operator
B : U → D.

Introduce the state variable u ∈ U s.t.

F(m) = B(u(m)), r(m, u) = 0

min
m∈M

J (m) = 1
2‖B(u(m))− d‖2 +R(m)

For a Newton type solution method
I Using the Lagrangian formalism, gradient computation requires solving

two PDEs: the forward & adjoint problems
I Each Hessian action requires solving two linearized PDEs: the

incremental forward & incremental adjoint problems
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The proposed consensus ADMM

Algorithm 2: The mean based scaled ADMM for parameter inversion
with multiple PDEs

Let q be the number of PDEs
Begin with starting points ({m0

i }
q
i=1, z

0, {y0
i }

q
i=1)

while While convergence criterion is not met, k = 1, . . . do
for i = 1, . . . , q do

mk+1
i = argminmi

1
2q ||Fi (mi )− d i ||2 + ρk

2q ||mi − zk + yki ||2

end

Set m̄ = 1
q

∑q
i=1 m

k+1
i and, ȳ = 1

q

∑q
i=1 y

k+1
i

zk+1 = argminz R(z) + ρ
2 ||m̄ − z + ȳ ||2

for i = 1, . . . , q do

yk+1
i = yki + (mk+1

i − zk+1)
end

Update ρk+1 adaptively
end
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hIPPYlib: Inverse Problem PYthon

An extensible software framework for PDE-constrained determinsitic
and Bayesian inverse problems

Implements state of the art scalable adjoint based algorithms

Built on FEniCS for discretization of PDEs and PETSc for scalable
and effecient linear algebra

Employs use of advanced structure-exploiting algorithms and
approximations

Maintains consistency with underlying infinite-dimensional problem

Facilitates expirementation with different priors, observation
operators, noise covariance models, model parameter representations,
etc.

https://hippylib.github.io/5

5
Villa et al., (2018). hIPPYlib: An Extensible Software Framework for Large-Scale Inverse Problems. Journal of Open

Source Software, 3(30), 940, https://doi.org/10.21105/joss.00940
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hIPPYlib features

Friendly, compact,
near-mathematical FEniCS
notation to express PDE and
likelihood in weak form.

Automatic generation of
efficient code.

Scalable algorithms
I MAP point computation
I Low rank representaiton of

posterior covariance via
randomized algorithms

I Scalable sampling from prior
and posterior

I Forward/inverse propagation
of Uncertainty Quantification
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Electrical Impedance Tomography(EIT)

Electrical Impedance Tomography (EIT) is an imaging modality in which

An electrical current is introduced on the boundary of an object

The electric potential is measured on the boundary.

The potential measurements are used to reconstruct for conductivity

6

6
https://www.mdpi.com/2077-0383/8/8/1176/htm
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Formulating EIT in the continuous setting

Goal to minimize

1

q

q∑
i=1

Li (m) +R(m), Li (m) =
1

2

∫
Γi

(ui − d i )
2ds

The regularization used was a combination of TV and L2

The potential ui solves the electrostatic Maxwell equation
−∇ · em∇ui = 0 x ∈ Ω
∂
∂ηui = gi x ∈ Γi

N

ui = 0 x ∈ Γi
D

where σ := em is the conductivity domain and ui is the electric potential
resulting from introducing the current gi
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Discretization

For discretization we applied the finite element method(FEM) used in
FEniCS

Ω = D2

Coarsest mesh had 8044 degrees of freedom on M and U
Parameter updates were accomplished using the INCG algorithm in
hIPPYlib

Consensus updates were found using the PETScTAOSolver built into
Fenics
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Ground Truth

True parameter

True states 1,11,16 for EIT problem with q = 16
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H1 reconstruction with inexact subproblem solutions

Inverted consensus for EIT problem using exact and inexact m solves

The relative error, primal and dual residuals wrt Foward PDE solves
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Scalability with respect to problem size

Fix q = 16 and sequences of uniformly refined meshes
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8044 31816 71280 126428
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Accuracy with respect to problem size

Relative error and state misfit for ADMM and monolithic approaches vs number
of degrees of freedom
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Scalability with respect to problem size (number of PDE
solves)

Similar results hold for scaling by number of forward models
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Quantitative photoacoustic tomography(qPACT)

1 A fast laser pulse is sent into an object

2 Underlying material absorbs this energy generating heat and a local
increase pressure distribution

3 Pressure distribution transitions into acoustic waves and measured on
boundary

Luke Lozenski Consensus ADMM for Inverse Problems FEniCS Conference 18 / 22



Formulation of the qPACT problem

We focused on reconstructing for optical properties given the initial
pressure distribution

Observation operator d =
p0

Γ
= µaφ+ e

Diffusion approximation to radiative transport
−∇ · 1

3(µa+µ′s)∇φ+ µaφ = 0 x ∈ Ω

with Robin boundary condition
1

3(µa+µ′s)
∂φ
∂η + 1

2φ = 1
2φ0 x ∈ ∂Ω

Form the data fidelity term

1

q

q∑
i=1

Li (s, cthb, µ′s) =
1

q

q∑
i=1

|| ln(µa,iφi )− ln(di )||2

and use regularization with a mixture of Tikhonov, TV, and L1
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Forward Results

Measurements corresponding to 757, 800, 850 nm
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Reconstruction Results

True s, cthb, chb, and chbO2

Reconstructed s, cthb, chb, and chbO2
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Conclusions

We presented a framework for solving inverse problems governed by PDE
forward models using ADMM

ADMM is well suited for solving problems involving several large-scale
PDE models with nonsmooth regularization

ADMM solution method significantly reduced computational costs
while still achieving satisfactory accuracy

In the future, we plan to improve upon this framework by

Implementing a primal-dual solver for updating the consensus variable

Implementing the ADMM process on several processors, with each
PDE model being handled by its own set of processors.

The code and EIT example will be included in hIPPYlib

This work was partially supported by the National Science Foundation under Grant No ACI-1550593.
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