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1.1 Heart Models and the Cardiac Cycle

Healthy heart Eccentric growth after
volume overload

Concentric growth after
pressure overload

• Cardiovascular disease entities most prevalent in industrialized world [Dimmeler 2011, Luepker 2011]

• Diseases of the myocardium (heart muscle) are multifactorial and yet to be fully understood

➢ Altered mechanical loads
➢ Neurohormonal changes

• Heart may undergo adaptations in structure and shape if loading conditions are
chronically above a certain physiological level, referred to as
Growth and Remodeling (G & R) [Rossi et al. 1991]

• Volume overload (Fig. (b)):

➢ Heart adapts by eccentric growth (systolic heart failure)

• Pressure overload (Fig. (c)):

➢ Heart adapts by concentric growth (diastolic heart failure)
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2.1 Patient-specific Geometric 3D-0D Heart Model

Rule-based fiber directions
Transmural variation (-60°, 60°)

[Doste et al. 2019, Bayer et al. 2012]

• Heart muscle: Nonlinear nearly-incompressible hyperelastic, anisotropic solid [Guccione et al. 1991]

• Contraction: Time- and fiber stretch-dependent active stress law [Bestel et al. 2001]

• Circulatory system is modeled with a lumped-parameter 0D flow model (compliances,
resistances inertances) [Hirschvogel et al. 2017, Trenhago et al. 2016, Ursino and Magosso 2000a,b]

Frank-Starling mechanism [Solaro 2007]

Free heart STL geometry from https://www.icmm.ru/tomogram-to-fem
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2.2 Continuum Mechanical Modeling of G&R

• G&R computed in a kinematic growth framework with multiplicative split of
deformation gradient into elastic and inelastic (growth) part
[Lee et al. 1969, Rodriguez et al. 1994]

• Growth deformation gradient is function of growth stretch     and possibly
of preferred directions       :

• Growth stretch usually is governed by an evolution equation and can depend on
mechanical or other stimuli:

• Remodeling is taken into account by additively decomposing the stress response into a part governing the reference 
and one describing the remodeled material (similar to [Thon et al. 2018]):

: Fraction of grown material
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3.1 3D-0D Coupled Elastodynamics

• Nonlinear elastodynamics using Generalized-alpha time integration [Chung and Hulbert 1993]

• Strongly coupled 3D-0D monolithic solution of solid mechanics and lumped flow models
[Hirschvogel et al. 2017]

• Use of direct solver (SuperLU) or block-pre-
conditioned GMRES [Elman et al. 2008]

• ~90’000 linear displacement-based tetrahedral elements, ~60’000 unknowns

➢ Example healthy heart cycle simulation:

https://github.com/marchirschvogel/ambit
Open-source Python FEniCS-based solver for cardiac mechanics
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3.2 Inelastic Deformation-Dependent Growth & Remodeling

• Fiber stretch-driven anisotropic growth in fiber direction

• Stress in inner virtual work depending on deformation and internal variable    , which is
deformation-dependent itself in a nonlinear way (needs local Newton to solve)

• Full material tangent operator reads:

➢ FEniCS UFL can only take care of first term, since no analytic expression                  possible

➢ Express virtual work linearization directly as form without using “derivative” and add second term manually to

➢ Depending on growth law, can render excessive FFC-X compilation times! (between 5 and 30 minutes!)

 
Elastic part of
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3.3 Multiscale-in-Time Analysis: Volume Overload and Eccentric Growth in the Heart

• Homeostatic healthy heart beat computation

• Acute disease state (e.g. mitral valve regurgitation)
computation, evaluation of end-diastolic volume
overload

• Set state “large time scale”:

➢ Quasi-static growth computation

• Set state “small time scale”:

➢ Compute new homeostatic heat beat state

• Mutually revisit small and large scale until growth
falls below a certain tolerance
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4.1 Eccentric Growth in the Heart: Results for Mitral Regurgitation (MR)

• G&R after mitral valve regurgitation

➢ Loss of isovolumetric contraction
phases

➢ Right-shift of pressure-volume
relationship

➢ LV wall thinning

• “Heart failure with reduced ejection
fraction”

• Remodeling: Assumption that only active material is reduced with growth (cardio-
myocytes are elongated, degradation and disruption of fibrillar collagen, impaired
contractility [Aurigemma et al. 2006]):

Acute MR G&R and MR
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5 Summary & Outlook

• Multiphysics and multiscale approach to cardiac growth and remodeling using FeniCS-X

➢ 3D-0D coupled nonlinear elastodynamics and reduced-dimensional flow

➢ Inelastic deformation-dependent growth solved at integration point level

• Physiological results and growth patterns, but ...

• Need of fine-tuning to match experimental data

• Need for higher-order spatial approximation to avoid spurious effects of low-order finite elements, but ...

➢ Missing Quadrature function spaces in FEniCS-X! For linear elements with one integration point (CG1), growth material 
is specified as discontinuous DG0 function pace

➢ No quadratic convergence for growth material living on DG1 space for higher-order mesh (CG2)

• Need for strategies of reducing FFC-X compiler times for complex constitutive UFL expressions



Thank you for your attention!
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