
FEniCS-preCICE: Coupling FEniCS to other Simulation Software

Ishaan Desaia, Benjamin Rodenbergb, Richard Hertrichb, Alexander Jaustc, Benjamin Uekermanna

aUsability and Sustainability of Simulation Software, Institute for Parallel and Distributed Systems, University of Stuttgart

bScientific Computing in Computer Science, Department of Informatics, Technical University of Munich

cSimulation of Large Systems, Institute for Parallel and Distributed Systems, University of Stuttgart

(a) https://fenicsproject.org/

1

https://fenicsproject.org/

Contents

Introduction to preCICE

FEniCS-preCICE: A preCICE Adapter for FEniCS

Examples of Coupled Problems with FEniCS

Getting FEniCS-preCICE

2

preCICE - A Flexible Coupling Library

What is preCICE used for?

Coupling solvers for multi-physics simulations in a partitioned black-box fashion

Working principles of preCICE

Partitioned approach, black-box coupling,
massively parallel, highly flexible, library
approach

Solver A Solver B

Communication
Data Mapping

Coupling Schemes

libprecice adapter

in-house
solver

fluid solver

ad
ap

te
r

structure
solver

lib
pr
ec
ice

coupling schemes

data mapping

. . .

. . .

communication

time interpolation

A Coupling Library for Partitioned
Multi-Physics Simulations

commercial
solver

so
lve

r

OpenFOAM
SU2

CalculiX
Code_Aster
FEniCS
deal-ii
Nutils
MBDyn

API in: C++
C

Python
Fortran

Matlab

foam-extend

ANSYS Fluent
COMSOL

Figure: Overview of preCICE features

3

FEniCS-preCICE

Goal of FEniCS-preCICE

To provide a helper package to a FEniCS user to facilitate easy use of preCICE to setup a coupled problem

Design Principles:

To have a middle layer between high-level FEniCS
program and low-level C++ preCICE API

Use python-bindings of preCICE to access C++ API

To have a highly modular structure which is easy to
understand and modify in future

To handle as many boilerplate tasks as possible inside
the adapter

Features of Adapter:

Adapter supports 2D cases in FEniCS. Users can
define boundary conditions using FEniCS Expression or
PointSource

Adapter needs to be configured with a JSON file

fenicssolver.py

FEniCS-preCICE adapter

import fenics

import fenics
import precice

import fenicsprecice

libprecice

coupling to
OpenFOAM, SU2, ...

xml
precice.SolverInterface(...)

json
fenicsprecice.Adapter(...)

Figure: Functioning of FEniCS-preCICE Adapter

4

API Functions of FEniCS-preCICE

Adapter receives configuration
information from JSON file

Adapter retrieves mesh data from user
defined FEniCS FunctionSpace and the
coupling boundary SubDomain

Converting data from FEniCS format to
preCICE format and visa-versa is
handled internally in the functions
read_data() and write_data()

Data at coupling boundary can be of the
form of a FEniCS Expression or FEniCS
PointSource

Distributed parallelization in FEniCS is
handled out of the box

Checkpointing functionality for implicit
coupling

def __init__(self, adapter_config_filename='precice-adapter-config.json'):

self._interface = precice.Interface(...)

def initialize(self, coupling_subdomain, read_function_space=None,

write_object=None):↪→
precice_dt = self._interface.initialize()

def read_data(self):

return data

def write_data(self, write_function):

def create_coupling_expression(self):

return CouplingExpression(...)

def update_coupling_expression(self, coupling_expression, data):

coupling_expression.update_boundary_data(nodal_data, x_coordinates,

y_coordinates)↪→

def get_point_sources(self, data):

return x_PointSources, y_PointSources

def store_checkpoint(self, user_u, t, n):

self._checkpoint = SolverState(user_u.copy(), t, n)

self._interface.mark_action_fulfilled(

precice.action_write_iteration_checkpoint())↪→

def retrieve_checkpoint(self):

self._interface.mark_action_fulfilled(

precice.action_read_iteration_checkpoint())↪→
return self._checkpoint.get_state()

5

Modifying a FEniCS Program to couple using FEniCS-preCICE

from fenics import *

mesh = UnitSquareMesh(10, 10)

class Boundary(SubDomain): ...

V = V_bc = FunctionSpace(mesh, 'P', 2)

u, v = TrialFunction(V), TestFunction(V)

u_D = Expression('...',degree=2)

uncoupled_bc = DirichletBC(V_bc, u_D, Boundary)

Define initial condition and weak form in FEniCS

...

for t in np.arange(0,T,dt):

solve(lhs(F) == rhs(F), u, [uncoupled_bc])

6

Modifying a FEniCS Program to couple using FEniCS-preCICE

from fenics import *

mesh = UnitSquareMesh(10, 10)

class Boundary(SubDomain): ...

V = V_bc = FunctionSpace(mesh, 'P', 2)

u, v = TrialFunction(V), TestFunction(V)

u_D = Expression('...',degree=2)

uncoupled_bc = DirichletBC(V_bc, u_D, Boundary)

Define initial condition and weak form in FEniCS

...

for t in np.arange(0,T,dt):

solve(lhs(F) == rhs(F), u, [uncoupled_bc])

from fenics import *

from fenicsprecice import Adapter

mesh = UnitSquareMesh(10, 10)

class Boundary(SubDomain): ...

class CouplingBoundary(SubDomain): ...

V = V_bc = FunctionSpace(mesh, 'P', 2)

u, v = TrialFunction(V), TestFunction(V)

V_flux = VectorFunctionSpace(mesh, 'P', 1)

u_D = Expression('...',degree=2)

uncoupled_bc = DirichletBC(V_bc, u_D, Boundary)

adapter = Adapter("precice-adapter-config.json")

precice_dt = adapter.initialize(CouplingBoundary, read_function_space=V_bc,

write_object=V_flux)↪→
u_C = adapter.create_coupling_expression()

coupled_bc = DirichletBC(V_bc, u_C, CouplingBoundary)

Define initial condition and weak form in FEniCS

...

while adapter.is_coupling_ongoing():

read_data = adapter.read_data()

adapter.update_coupling_expression(u_C, read_data)

dt.assign(np.min([fenics_dt, precice_dt]))

solve(lhs(F) == rhs(F), u_np1, [uncoupled_bc, coupled_bc])

flux = some_postprocessing(u_np1, V_flux)

adapter.write_data(flux)

precice_dt = adapter.advance(dt(0))

u_n.assign(u_np1)

t += float(dt)

7

Example Case: Conjugate Heat Transfer Coupling with FEniCS and OpenFOAM

buoyantPimpleFoam (OpenFOAM) solves fluid and heat transport problem

FEniCS solves heat transport problemΓC

ΓC, no-slip

coupling via preCICE

Γhot
Γ Γ

Γslip Γno-slip

Γslip

Γinflow Γoutflow

H

L

l
h

w

8

Example Case: Fluid-Structure Interaction Coupling with FEniCS and SU2

SU2 solves fluid problem

FEniCS solves
structure problem

ΓC

ΓC

Γfixed

Γno-slip Γno-slip

Γno-slip

Γinflow ΓoutflowH
L

l

h
w

F coupling via preCICE

9

Getting FEniCS-preCICE and its Dependencies

Getting the Adapter:

Maintained under a open-source license here: https://github.com/precice/fenics-adapter

Easy to install: pip3 install fenicsprecice

Latest release can be found here: https://github.com/precice/fenics-adapter/releases

Other dependencies such as Scipy, Numpy, Cython, mpi4py are installed automatically during the adapter
installation

Dependencies

Python (python3)

preCICE (obviously)

FEniCS

Python-bindings for preCICE: pip3 install --user pyprecice

10

https://github.com/precice/fenics-adapter
https://github.com/precice/fenics-adapter/releases

Summary

preCICE is a coupling library for partitioned, black-box coupling. Designed for highly flexible and massively parallel
use

FEniCS-preCICE is an adapter to couple FEniCS programs with other software codes using preCICE

Adapter supports 2D FEniCS cases

Adapter handles FEniCS data structures and distributed parallelization automatically

Adapter is modular and flexible to use

Installation is straightforward using pip

Always happy with contributions from the community!

Immediate help required:

Extending adapter to handle 3D FEniCS cases

Implementing multiple coupling interfaces handling

Modify adapter to support FENICS-X and DOLFIN-X

Adding tutorials of coupled problems which use FEniCS
Research collaboration with the preCICE team

Pre-print of reference paper: Benjamin Rodenberg, Ishaan Desai, Richard Hertrich, Alexander Jaust, and Benjamin
Uekermann. FEniCS-preCICE: Coupling FEniCS to other Simulation Software: https: // arxiv. org/ abs/ 2103. 11191

11

https://arxiv.org/abs/2103.11191

	Introduction to preCICE
	FEniCS-preCICE: A preCICE Adapter for FEniCS
	Examples of Coupled Problems with FEniCS
	Getting FEniCS-preCICE

