A finite element model of electric fields in the brain

Vyassa Baratham

vbaratham@berkeley.edu

PhD Candidate University of California, Berkeley

> 22 Mar 2021 FEniCS 2021

The brain is composed of billions of neurons

Neurons are cells with branching extensions which reach out and connect to other neurons

Neurons are electrically active

An electrode near/on a neuron *in vivo* will periodically see transient (~1ms) spikes in electrical potential

The rate of spikes usually depends on what the animal is doing, or seeing, or hearing, thinking, etc.

Electrode attached to speaker **Pattern drifts down/left:** few spikes **Pattern drifts up/left:** lots of spikes

(sound on)

https://www.youtube.com/watch?v=Qz40mdaDYTU

Many studies record from large populations of neurons

Electroencephalography (EEG)

Electrocorticography (ECoG)

EEG and ECoG recordings reflect a superposition of the activity of ~10^{5±1} neurons Population-level recordings sacrifice **resolution** in favor of **coverage**

Population-level data contains detailed information

Example: Inferring speech from neural activity

Joseph G. Makin, David A. Moses, & Edward F. Chang (2020) https://doi.org/10.1038/s41593-020-0608-8

In order to understand exactly *how* this information is represented in the brain, we need to "invert" the population-level signal to reconstruct the activity of the underlying neuronal sources. **A detailed** *forward model* **may help.**

EEG and ECoG recordings reflect a superposition of signals from all nearby neurons

In order to understand exactly how information is represented in the brain, we need to "invert" the population-level signal to reconstruct the activity of the underlying neuronal sources.

This inverse problem is ill-posed: there may be different distributions of source activity which give rise to the same observed signal

A detailed *forward model* may provide insight into which of these distributions is consistent with biology.

Simulating the brain

Models of neural activity are precise, accurate

1. Hodgkin & Huxley (1952) show that cell membranes behave like electrical circuits

2. Cable equation describes spread of electrical potentials through neurons:

 $\frac{\partial V}{\partial T} = \frac{\partial^2 V}{\partial X} - V$

Models of neural activity are precise, accurate

Computers can accurately simulate neural activity:

Color indicates difference in electrical potential between the inside and outside of the cell

We can simulate the *activity of neurons* in a chunk of brain.

Next: what would an electrode near these neurons read?

Models of extracellular potential are drastically simplified

Given an electrical current I(t) through one segment of a neuronal membrane, what signal $V(\mathbf{r}, t)$ would an external electrode located at point \mathbf{r} read?

Assume extracellular space is:

- Homogeneous
- Isotropic
- Purely Ohmic (no capacitance)

Point Source Approximation

The extracellular medium is inhomogenous

Kasthuri, Narayanan et al. Cell, Volume 162, Issue 3, 648 - 661

FEM handles full complexity of extracellular space

Alessio Paolo Buccino et al 2019 J. Neural Eng. 16 026030

$ abla \cdot \sigma_i abla u_i = 0$	in Ω_i ,	(1)	$\mathbf{n}_e \partial \Omega$
$\nabla \cdot \sigma_e \nabla u_e = 0$	in Ω_e ,	(2)	Ω_e \mathbf{n}_i
$u_e = 0$	at $\partial \Omega_e$,	(3)	$\Gamma \qquad \Gamma \qquad$
$\sigma_e \nabla u_e \cdot n_e = 0$	at $\partial \Omega_p$,	(4)	$\square_e \Omega_i$
$n_e \cdot \sigma_e abla u_e = -n_i \cdot \sigma_i abla u_i \stackrel{\text{def}}{=} I_{\text{m}}$	at Γ,	(5)	
$u_i - u_e = v$	at Γ,	(6)	Interior and exterior of cells are separate, but coupled by the membrane (6)
$rac{\partial v}{\partial t} = rac{1}{C_m}(I_{\mathrm{m}} - I_{\mathrm{ion}})$	at Γ.	(7)	(7) gives the time evolution of the membrane potential

Overview

