
Ivan Yashchuk
Aalto University | Quansight Labs

AD libraries + FEniCS/Firedrake

FEniCS’21 Conference
ivan.yashchuk@aalto.fi

Behind the scenes: Tangent and Adjoint PDEs
Symbolic form of the problem is used to derive additional PDEs that are solved for

calculating Jacobian-vector and vector-Jacobian products.

Let F(u, m) = 0 represent the PDE,

u represents the solution and m represents the parameters.

Jacobian-vector product:

vector-Jacobian product:

Jacobian-vector product

https://github.com/IvanYashchuk/jax-fenics

https://github.com/IvanYashchuk/jax-fenics

Jacobian-transpose-vector product

https://github.com/IvanYashchuk/jax-fenics

https://github.com/IvanYashchuk/jax-fenics

Composition with other JAX programs
Let’s use jax.stax to set up network initialization and evaluation functions

Define R^2 -> R^1 function
net_init, net_apply = jax.experimental.stax.serial(Dense(2), Relu, Dense(10), Relu, Dense(1))

nn_predictions = net_apply(net_params, W.tabulate_dof_coordinates())
f_nn = numpy_to_fenics(nn_predictions, fenics.Function(W))

https://nbviewer.jupyter.org/github/IvanYashchuk/jax-fenics-adjoint/blob/master/notebooks/poisson-intro.ipynb

https://nbviewer.jupyter.org/github/IvanYashchuk/jax-fenics-adjoint/blob/master/notebooks/poisson-intro.ipynb

“Physics-Informed” Neural Networks (PINN)

Equivalent minimization problem:

Usual FEM: Taking c = nn(x; coefficients)

and solving the minimization problem for neural network coefficients we get PINN.

“Physics-Informed” Neural Networks (PINN)

dolfin-adjoint is not enough but pyadjoint is
pyadjoint/dolfin-adjoint is an automatic differentiation for FEniCS and Firedrake

+ an interface to selected optimization libraries (SciPy, IPOpt, Moola, PyROL)

The goal is to embed PDE solvers inside other programs for

● composition with other differentiable programs (for example neural networks)

● probabilistic parameter estimation

● interface to optimization and sampling libraries outside of dolfin-adjoint

This work is about serialisation layer using NumPy arrays and API that simplifies

embedding of FEniCS/Firedrake in AD libraries

Finite Element Chain Rules (inspired by ChainRules.jl)

A serialisation layer using NumPy arrays

+ API that simplifies embedding of FEniCS/Firedrake in AD libraries

https://github.com/IvanYashchuk/fecr

https://github.com/IvanYashchuk/fecr

 FECR 🌄

https://ivanyashchuk.github.io/fenics_pymccon2020/

PyMC3

https://ivanyashchuk.github.io/fenics_pymccon2020/

https://github.com/IvanYashchuk/PyFenicsAD.jl

Julia | Turing.jl

Summary Statistics
 parameters mean std naive_se mcse ess rhat
 Symbol Float64 Float64 Float64 Float64 Float64 Float64

 kappa0 1.2497 0.3789 0.0120 0.0357 130.3485 1.0001
 kappa1 0.5443 0.1711 0.0054 0.0155 139.7087 1.0001
 σ 0.0143 0.0019 0.0001 0.0001 178.8158 1.0043

Quantiles
 parameters 2.5% 25.0% 50.0% 75.0% 97.5%
 Symbol Float64 Float64 Float64 Float64 Float64

 kappa0 0.5183 0.9850 1.2590 1.5483 1.9140
 kappa1 0.2295 0.4291 0.5424 0.6698 0.8579
 σ 0.0111 0.0130 0.0142 0.0154 0.0188

https://github.com/IvanYashchuk/PyFenicsAD.jl

Summary | AD + FEniCS/Firedrake
What?

Automatic forward and reverse differentiation of FEniCS/Firedrake composable with

JAX | PyMC3 | Julia

Why?

Reuse existing well established libraries instead of reinventing the wheels in

“differentiable physics” fashion

Composability with other libraries of host AD:

Including PDEs in probabilistic modelling using PyMC3 | Turing.jl | NumPyro (JAX)

Interfacing with optimization and sampling libraries

What’s next?

Arbitrary higher-order derivatives for JAX and Julia

Distributed array interface

Compatibility with JAX’s JIT compilation

How to get started?
Step 1: Install Firedrake or FEniCS
For embedding in other AD libraries:
https://github.com/IvanYashchuk/fecr

For JAX interface:
https://github.com/IvanYashchuk/jax-fenics-adjoint

For PyMC3 interface:
https://github.com/IvanYashchuk/fenics-pymc3

For Julia interface:
https://github.com/IvanYashchuk/PyFenicsAD.jl

https://github.com/IvanYashchuk/fecr
https://github.com/IvanYashchuk/jax-fenics-adjoint
https://github.com/IvanYashchuk/fenics-pymc3
https://github.com/IvanYashchuk/PyFenicsAD.jl

