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Exterior scattering1

Ωc

Ω′

Γ Σ

I Model waves reflecting off of
obstacle Γ{
−∆u − κ2u = 0, Rd \ Ωc

∂u
∂n = f , Γ

I Without any spurious
reflections from infinity

lim
r→∞

r (d−1)/2 (∂u
∂r − iκu

)
= 0

I In some finite domain of
interest Ω′ ⊆ Rd \ Ωc

bounded by Σ.
1Colton and Kress 1998; Kress 1999. 1 / 13
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Exterior scattering: computational problem
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Γ Σ

I Problem we want to solve
−∆u − κ2u = 0, Rd \ Ω
∂u
∂n = f , Γ

limr→∞ r (d−1)/2 (∂ u
∂r − iκu

)
= 0

I Problem we can actually solve
−∆u − κ2u = 0, Ω′

∂u
∂n = f , Γ

?????, Σ
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Exterior scattering: Perfectly Matched Layers (PML)3

Ωc

Ω′

Γ ΩS Σ


−∇ · β(x)∇u − κ2u = 0, Ω′

∂u
∂n = f , Γ

u = 0, Σ

I Ω′: β = I , satisfies original
equation

I ΩS : β is a complex-valued
coordinate transform to cause
exponential decay in
oscillating waves

I Preconditioning is difficult!2
2Engquist and Ying 2011; Safin, Minkoff, and Zweck 2018.
3Berenger 1994; Erlangga 2006; Bermudez et al. 2006. 3 / 13
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Integral form of the solution

Using the Helmholtz Green’s function

K (x) =
i

4π |x|
e iκ|x|,

Figure: K in 2D

the true solution satisfies4

u(x) = D(u)(x)− S(∂u∂n )(x), x ∈ Ω′

where

D(u)(x) =

∫
Γ

(
∂
∂nK(x − y)

)
u(y) dy ,

S(u)(x) =

∫
Γ
K(x − y)u(y) dy

4Colton and Kress 1998; Kress 1999. 4 / 13
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Exterior scattering

Ωc

Ω′

Γ Σ

Exact boundary conditions
−∆u − κ2u = 0, Ω′

∂u
∂n = f , Γ

(iκ− ∂
∂n ) (u − D(u) + S(f )) = 0, Σ

Variational Form:
For all v ∈ H1(Ω′)

(∇u,∇v)− κ2 (u, v)− iκ〈u, v〉Σ+〈
(
iκ− ∂

∂n

)
D(u), v〉Σ

= 〈f , v〉Γ +〈
(
iκ− ∂

∂n

)
S(f ), v〉Σ
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Theory

I a is a bounded bilinear form on H1 × H1

I F is a bounded linear functional on H1

I Gårding inequality. There existM and an α > 0 such that

Re(a(u, u)) + M ‖u‖2 ≥ α ‖u‖2H1(Ω) .

I For h ≤ h0, we have optimal-order H1 and L2 error
estimates.5

5Kirby, Klöckner, and Sepanski 2021. 6 / 13
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Nonlocal operations in UFL

I Recall:

D(u)(x) =

∫
Γ

∂
∂nK(x − y)u(y) dy , x ∈ Σ

I Problem: Nonlocal operations have large support (all of Σ!)
– This makes our stiffness matrix dense, especially in 3D
– Solution: Firedrake’s matrix-free evaluation

I Problem: Naive evaluation of layer potentials is slow:
– ndof(Γ) · ndof(Σ)
– Solution: Fast multipole methods (FMM)6: use the structure
of K to compute the potential in linear time with low-rank
approximations

6Carrier, Greengard, and Rokhlin 1988. 7 / 13
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Nonlocal operations in UFL: Marshalling pytential8

I Build LayerPotential as a UFL External Operator7

X Build pytential representation of domain of interest

X Build pytential representation of function space

X Build efficient converter between pytential and firedrake
representations

– Fully support automatic differentiation

I Evaluation of
〈
(iκ− ∂

∂n )D(u), v
〉

Σ

X LayerPotential evaluates D(u) (automatically uses
pytential, which employs FMM to compute the potential)

X Firedrake evaluates inner product

7N. Bouziani, External Operators: https://fenics2021.com/talks/bouziani.html
8Klöckner 2020. 8 / 13
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Solving the system with Firedrake

Extend UFL:

a(u, v) = (∇u,∇v)− κ2 (u, v)− iκ〈u, v〉Σ + 〈
(
iκ− ∂

∂n

)
D(u)v〉Σ

Will be written as:

9 / 13
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Numerical results: 2D
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Preconditioning: LU of local part
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Preconditioning: PyAMG

I If we can find a good preconditioner for the local problem,
we get a good preconditioner for the nonlocal problem

I PyAMG: precondition with plane waves
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Conclusion

Results
I Novel nonlocal boundary

condition
– Error estimates 9

I Extension of UFL to efficiently
handle nonlocal operators

I Numerical experiments
demonstrating optimal-order
convergence

I Investigation into
preconditioners

Coming Soon
I Full implementation of

LayerPotentials and
VolumePotential10s in
UFL as External
Operator11s

I General theory for this
method and application
to more problems

10Kirby, Klöckner, and Sepanski 2021.
11X. Wei, IEM-FEM Coupling: https://fenics2021.com/talks/wei.html
12N. Bouziani, External Operators: https://fenics2021.com/talks/bouziani.html 13 / 13
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