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All the simulations were performed within FEniCS!, RBniCS? and PyTorch.

A. Logg et al. Automated Solution of Differential Equations by the Finite Element Method. Springer, 2012.
2RBniCS - reduced order modelling in FEniCS. https://www.rbnicsproject.org
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https://www.rbnicsproject.org

Preliminary examples

Question:
What have in common complex models coming from different physical contexts?
= Sudden changes linked to qualitatively different behaviour of the solutions.
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Example:
The situation for a compressed beam can change abruptly when the load is
increased beyond a certain critical level at which the beam buckles.
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Bifurcation theory and its numerical approximation

We represent a nonlinear PDE with the parametrized mapping G : X x P — X',
Given pu € P C R”, seek X(pt) € X such that:

G(X(u)ip)=0, inX. (1) g(X(pn),Yim)=0, VYeX (2

Consider the finite dimensional space Xy C X, with dimension N/.

Algorithm 1 A pseudo-code for the reconstruction of a branch

1: Xo = Xguess > Initial guess
2: for p; € Pk do > Continuation loop
3: XJ(.O) =Xj-1 > Continuation guess
4 while ||GN(X(k),uj)||xN> € do > Newton method
5 JN(X(k), 1j)OX = GN( : ,u,) > Galerkin-FE method
6: xj(.k“) X — 6x

7 end while

8 In(Xj; ) Xe = o MarXe > Eigenproblem for stability
9: end for
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Reduced Order Models (ROMs)3:4

We focus on Reduced Basis (RB) method based on POD strategy, defining

Xy =span{¥”, m=1,---,N} C Xy, where N<KN,

Ntrain
n=1 -

where {Z™}N_, are the basis functions obtained from the snapshots {Xx- (")}

G(X(p)ip)=0
N—_——

MANIFOLD

3J. S. Hesthaven, G. Rozza, and B. Stamm. Certified Reduced Basis Methods for Parametrized Partial
Differential Equations. Springer International Publishing, 2015.

4A. Quarteroni, A. Manzoni, and F. Negri. Reduced Basis Methods for Partial Differential Equations:
An Introduction. Springer International Publishing, 2015.
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Reduced Order Models (ROMs)3:4

We focus on Reduced Basis (RB) method based on POD strategy, defining

Xy =span{X™, m=1,---,N} C Xnr, where N <N,

Ntrain
n=1 -

G(X(p)im) =0 ~  Gu(Xn(u)ip)=0 ~  Gn(Xn(p)ip) =0
—_————— —_— ————

where {Z™}N_, are the basis functions obtained from the snapshots {Xx- (")}

e Global approach:
Pros: single space encoding all branches
Cons: larger N and higher errors.

BIFURCATIONS
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Reduced Order Models (ROMs)3:4

We focus on Reduced Basis (RB) method based on POD strategy, defining

Xy =span{¥”, m=1,---,N} C Xy, where N<KN,

where {Z™}N_, are the basis functions obtained from the snapshots {Xxr(p")} 2.

n=1

G(X(p)ip)=0 ~  Gu(Xn(p)ip)=0 ~  Gn(Xn(p);p)=0
N—_—— N—_———

e Global approach:
Pros: single space encoding all branches
Cons: larger N and higher errors.

e Branch-wise approach:
Pros: low dimensional space
Cons: hidden unsampled branch.

BIFURCATIONS

3J. S. Hesthaven, G. Rozza, and B. Stamm. Certified Reduced Basis Methods for Parametrized Partial
Differential Equations. Springer International Publishing, 2015.

4A. Quarteroni, A. Manzoni, and F. Negri. Reduced Basis Methods for Partial Differential Equations:
An Introduction. Springer International Publishing, 2015.
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Motivations for non-intrusive approach

5Coal: Investigate efficiently complex bifurcating behaviour in a real-time context.

5How: POD-NN approach combining ROMs and learning of reduced coefficients.

OUTPUT

""" /A\\\//A\\//
\‘»,,r 6”:’ “’

SO '\ ¢* m"ﬂ

\"‘ (& 0
/;:\ 44”( l%‘\' s

______ \V/,\\\ /,‘\\ (A

HIDDEN LAYERS

POD-NN approach:
approximate 7 : P C R” - R" such that g — VT Xpr(p) from a training set given
by the pairs {(p', V" Xn (1))} M2 obtained from the offline POD procedure.

5F. Pichi, F. Ballarin, G. Rozza, and J. S. Hesthaven. Artificial neural network for bifurcating phenomena
modelled by nonlinear parametrized PDEs. Preprint, 2020.

6J. S. Hesthaven and S. Ubbiali. Non-intrusive reduced order modeling of nonlinear problems
using neural networks. Journal of Computational Physics, 363:55-78, 2018.
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Navier-Stokes application: the Coanda effect in a channel

NS system for viscous, steady and incompressible flow

V = Vin on Fin,
with v=0 on [,

—pn+ (uVv)n =0 on lou,

—pAv+v-Vv+Vp=0 inQ,
V-v=0 in Q,

ISSUE: For viscosities p < p* = 0.96 wall-hugging (stable) phenomena occur.

Biurcation diagram
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Navier-Stokes application: the Coanda effect in a channel

SETTING

Parameter space P =2, (u,w) € P =[0.5,2] x [0.5, 1.5], viscosity and ch. width.
RE dimension Ny =50, N, = 24. Network 2 layers, 15 neurons, Nirin = 200 - 6.

®  |luy—unnl|e: error
®  |Juy— unnllkg error

POD-NN speed-up = 10°
enn = 0.0625, €yy = 0.0118.

RB speed-up = 1.5
epa’ = 0.7553, €gg = 0.0129.

Bifurcation diagram
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Navier-Stokes application: triangular cavity flow

A Mg B
Towards multiple bifurcating regimes:
existence of a critical angle for the parametrized
geometry causing a vortex attaching to vertex B
. . rwaII I_wall
increasing the Reynolds number.
C

SETTING

P =3, (v, 1, 2) € P =[2-107% 1] x [-0.5,0.5] x [—.25, —1],
viscosity and bottom vertex position. N, = 100, N, = 44.
3 layers, 20 neurons, log-equispaced sampling, tanh, epochs, Adam opt.

Velocity field
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A reduced manifold based bifurcation diagram

. efficiently reconstruct a bifurcation diagram, where the output is entirely
based on the reduced coefficients appearing in the RB expansion.

: take advantage of the non-smoothness of the manifold, constructing a
detection tool that is able to track the critical points employing its curvature.

: L relative error for the vector of the critical points is of the order 102.
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Figure: Multi-parameter Coanda test case: (Left) Reduced manifold based bifurcation
diagram reconstruction. (Right) RB/POD-NN based 3D bifurcation diagram.
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Conclusions and Perspectives

/A We described the general framework for the approximation of bifurcating
nonlinear parametrized PDEs.

A We investigated the intrusive Reduced Basis method to obtain an efficient
evaluation of the bifurcation diagrams.

A We applied the non-intrusive POD-NN technique to recover the decoupling
between offline and online phases.

/A We presented an application of the methodology to the multi-parameter test
cases: the Coanda effect in a channel and the triangular cavity flow.

A We developed a new empirical strategy employing the reduced coefficients to
recover the bifurcation diagram from the manifold's curvature.
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Conclusions and Perspectives

A

We described the general framework for the approximation of bifurcating
nonlinear parametrized PDEs.

We investigated the intrusive Reduced Basis method to obtain an efficient
evaluation of the bifurcation diagrams.

We applied the non-intrusive POD-NN technique to recover the decoupling
between offline and online phases.

We presented an application of the methodology to the multi-parameter test
cases: the Coanda effect in a channel and the triangular cavity flow.

We developed a new empirical strategy employing the reduced coefficients to
recover the bifurcation diagram from the manifold's curvature.

Reduce the number of training points needed incorporating physics with
(PINNSs).

Embed (AutoML) to select best configuration for
the hyper-parameters of the neural network.

of the POD-NN technique w.r.t. the number of RB modes
by developing new algorithmic procedure.
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Thank for your attention
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