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Outline map

All the simulations were performed within FEniCS1, RBniCS2 and PyTorch.
1A. Logg et al. Automated Solution of Di�erential Equations by the Finite Element Method. Springer, 2012.
2RBniCS - reduced order modelling in FEniCS. https://www.rbnicsproject.org
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Preliminary examples

Question:
What have in common complex models coming from di�erent physical contexts?
∆ Sudden changes linked to qualitatively di�erent behaviour of the solutions.

Example:
The situation for a compressed beam can change abruptly when the load is
increased beyond a certain critical level at which the beam buckles.

µ
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Bifurcation theory and its numerical approximation

We represent a nonlinear PDE with the parametrized mapping G : X ◊ P æ XÕ.
Given µ œ P µ RP , seek X(µ) œ X such that:

Strong form

G(X(µ); µ) = 0, in XÕ. (1)

Weak form

g(X(µ), Y ; µ) = 0, ’ Y œ X. (2)

Consider the finite dimensional space XN µ X, with dimension N .

Algorithm 1 A pseudo-code for the reconstruction of a branch

1: X0 = Xguess Û Initial guess
2: for µj œ PK do Û Continuation loop
3: X(0)

j
= Xj≠1 Û Continuation guess

4: while ||GN (X(k)
j

; µj)||XN > ‘ do Û Newton method
5: JN (X(k)

j
; µj)”X = GN (X(k)

j
; µj) Û Galerkin-FE method

6: X(k+1)
j

= X(k)
j

≠ ”X
7: end while
8: JN (Xj ; µj)Xe = ‡µj

MN Xe Û Eigenproblem for stability
9: end for
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Reduced Order Models (ROMs)3,4

We focus on Reduced Basis (RB) method based on POD strategy, defining

XN = span{�m, m = 1, · · · , N} µ XN , where N π N ,

where {�m}N

m=1 are the basis functions obtained from the snapshots {XN (µn)}Ntrain

n=1 .

G(X(µ); µ) = 0¸ ˚˙ ˝
Partial di�erential

equation

 GN (XN (µ); µ) = 0¸ ˚˙ ˝
High Fidelity

approximation

 GN(XN(µ); µ) = 0¸ ˚˙ ˝
Reduced Basis
approximation

• Global approach:
Pros: single space encoding all branches
Cons: larger N and higher errors.

• Branch-wise approach:
Pros: low dimensional space
Cons: hidden unsampled branch.

X

MANIFOLD

3J. S. Hesthaven, G. Rozza, and B. Stamm. Certified Reduced Basis Methods for Parametrized Partial

Di�erential Equations. Springer International Publishing, 2015.
4A. Quarteroni, A. Manzoni, and F. Negri. Reduced Basis Methods for Partial Di�erential Equations:

An Introduction. Springer International Publishing, 2015.
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Motivations for non-intrusive approach

5Goal: Investigate e�ciently complex bifurcating behaviour in a real-time context.

6How: POD-NN approach combining ROMs and learning of reduced coe�cients.

RP
RN

INPUT
OUTPUT

HIDDEN LAYERS

POD-NN approach:
approximate fi : P µ RP æ RN such that µ ‘æ VT XN (µ) from a training set given
by the pairs {(µi , VT XN (µi ))}Ntrain

i=1 obtained from the o�ine POD procedure.
5F. Pichi, F. Ballarin, G. Rozza, and J. S. Hesthaven. Artificial neural network for bifurcating phenomena

modelled by nonlinear parametrized PDEs. Preprint, 2020.
6J. S. Hesthaven and S. Ubbiali. Non-intrusive reduced order modeling of nonlinear problems

using neural networks. Journal of Computational Physics, 363:55–78, 2018.
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Navier-Stokes application: the Coanda e�ect in a channel

NS system for viscous, steady and incompressible flow
;

≠µ�v + v · Òv + Òp = 0 in �,

Ò · v = 0 in �,
with

Y
]

[

v = vin on �in,

v = 0 on �0,

≠pn + (µÒv)n = 0 on �out,

ISSUE: For viscosities µ Æ µú ¥ 0.96 wall-hugging (stable) phenomena occur.

x 2
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Navier-Stokes application: the Coanda e�ect in a channel

SETTING
Parameter space P = 2, (µ, w) œ P = [0.5, 2] ◊ [0.5, 1.5], viscosity and ch. width.
RB dimension Nu = 50, Np = 24. Network 2 layers, 15 neurons, Ntrain = 200 · 6.

POD-NN speed-up = 106

‘max
NN

= 0.0625, ‘NN = 0.0118.
RB speed-up = 1.5
‘max

RB
= 0.7553, ‘RB = 0.0129.
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Navier-Stokes application: triangular cavity flow

Towards multiple bifurcating regimes:
existence of a critical angle for the parametrized
geometry causing a vortex attaching to vertex B

increasing the Reynolds number.

�lid

�wall

A B

C

�

�wall

SETTING
Parameter space P = 3, (‹, µ1, µ2) œ P = [2 · 10≠4, 1] ◊ [≠0.5, 0.5] ◊ [≠.25, ≠1],
viscosity and bottom vertex position. RB dimension Nu = 100, Np = 44.
Network 3 layers, 20 neurons, log-equispaced sampling, tanh, epochs, Adam opt.
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A reduced manifold based bifurcation diagram

Aim: e�ciently reconstruct a bifurcation diagram, where the output is entirely
based on the reduced coe�cients appearing in the RB expansion.

Idea: take advantage of the non-smoothness of the manifold, constructing a
detection tool that is able to track the critical points employing its curvature.

Result: L2 relative error for the vector of the critical points is of the order 10≠2.

Figure: Multi-parameter Coanda test case: (Left) Reduced manifold based bifurcation
diagram reconstruction. (Right) RB/POD-NN based 3D bifurcation diagram.
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Conclusions and Perspectives

— We described the general framework for the approximation of bifurcating
nonlinear parametrized PDEs.

— We investigated the intrusive Reduced Basis method to obtain an e�cient
evaluation of the bifurcation diagrams.

— We applied the non-intrusive POD-NN technique to recover the decoupling
between o�ine and online phases.

— We presented an application of the methodology to the multi-parameter test
cases: the Coanda e�ect in a channel and the triangular cavity flow.

— We developed a new empirical strategy employing the reduced coe�cients to
recover the bifurcation diagram from the manifold’s curvature.

“ Reduce the number of training points needed incorporating physics with
Physics Informed Neural Networks (PINNs).

“ Embed Automatic Machine Learning (AutoML) to select best configuration for
the hyper-parameters of the neural network.

“ Improve the decay of the POD-NN technique w.r.t. the number of RB modes
by developing new algorithmic procedure.
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