Artificial neural network for bifurcating phenomena modelled by nonlinear parametrized PDEs

F. Pichi^{1,2}
F. Ballarin³, G. Rozza¹
J. S. Hesthaven²

¹ mathLab, Mathematics Area, SISSA
 ²EPFL Lausanne, MCSS
 ³Catholic University of the Sacred Heart

FEniCS 2021 22-26 March

All the simulations were performed within FEniCS¹, RBniCS² and PyTorch.

¹A. Logg et al. Automated Solution of Differential Equations by the Finite Element Method. Springer, 2012. ²RBniCS - reduced order modelling in FEniCS. https://www.rbnicsproject.org

Preliminary examples

Question:

What have in common complex models coming from different physical contexts? \Rightarrow Sudden changes linked to qualitatively different behaviour of the solutions.

Example:

The situation for a compressed beam can change abruptly when the load is increased beyond a certain critical level at which the beam buckles.

Bifurcation theory and its numerical approximation

We represent a nonlinear PDE with the parametrized mapping $G : \mathbb{X} \times \mathcal{P} \to \mathbb{X}'$. Given $\mu \in \mathcal{P} \subset \mathbb{R}^P$, seek $X(\mu) \in \mathbb{X}$ such that:

Strong formWeak form
$$G(X(\mu); \mu) = 0$$
, in \mathbb{X}' . (1) $g(X(\mu), Y; \mu) = 0$, $\forall Y \in \mathbb{X}$. (2)

Consider the finite dimensional space $\mathbb{X}_{\mathcal{N}}\subset\mathbb{X}$, with dimension $\mathcal{N}.$

Algorithm 1 A pseudo-code for the reconstruction of a branch

1: $X_0 = X_{guess}$ ▷ Initial guess 2: for $\mu_i \in \mathcal{P}_K$ do ▷ Continuation loop $X_{i}^{(0)} = X_{j-1}$ 3: ▷ Continuation guess while $||\mathsf{G}_{\mathcal{N}}(\mathsf{X}_{i}^{(k)};\boldsymbol{\mu}_{i})||_{\mathbb{X}_{\mathcal{N}}} > \epsilon$ do 4: Newton method $\mathsf{J}_{\mathcal{N}}(\mathsf{X}_{i}^{(k)};\boldsymbol{\mu}_{i})\delta\mathsf{X}=\mathsf{G}_{\mathcal{N}}(\mathsf{X}_{i}^{(k)};\boldsymbol{\mu}_{i})$ Galerkin-FE method 5. $\mathsf{X}_{i}^{(k+1)} = \mathsf{X}_{i}^{(k)} - \delta \mathsf{X}$ 6. 7. end while $\mathsf{J}_{\mathcal{N}}(\mathsf{X}_{i};\boldsymbol{\mu}_{i})\mathsf{X}_{e}=\sigma_{\boldsymbol{\mu}_{i}}\mathsf{M}_{\mathcal{N}}\mathsf{X}_{e}$ Eigenproblem for stability 8: 9: end for

We focus on Reduced Basis (RB) method based on POD strategy, defining

$$\mathbb{X}_N = span\{\Sigma^m, m = 1, \cdots, N\} \subset \mathbb{X}_N, \text{ where } N \ll \mathcal{N}_N$$

where $\{\Sigma^m\}_{m=1}^N$ are the basis functions obtained from the snapshots $\{X_N(\mu^n)\}_{n=1}^{N_{train}}$.

 $G(X(\mu);\mu)=0$ Partial differentia equation

³J. S. Hesthaven, G. Rozza, and B. Stamm. *Certified Reduced Basis Methods for Parametrized Partial Differential Equations*. Springer International Publishing, 2015.

⁴A. Quarteroni, A. Manzoni, and F. Negri. *Reduced Basis Methods for Partial Differential Equations: An Introduction*. Springer International Publishing, 2015.

4/11

Federico Pichi ANNs for bifurcating phenomena modelled by nonlinear parametrized PDEs

We focus on Reduced Basis (RB) method based on POD strategy, defining

$$\mathbb{X}_N = span\{\Sigma^m, m = 1, \cdots, N\} \subset \mathbb{X}_N, \text{ where } N \ll \mathcal{N}_N$$

where $\{\Sigma^m\}_{m=1}^N$ are the basis functions obtained from the snapshots $\{X_N(\mu^n)\}_{n=1}^{N_{train}}$.

³J. S. Hesthaven, G. Rozza, and B. Stamm. *Certified Reduced Basis Methods for Parametrized Partial Differential Equations*. Springer International Publishing, 2015.

⁴A. Quarteroni, A. Manzoni, and F. Negri. *Reduced Basis Methods for Partial Differential Equations: An Introduction*. Springer International Publishing, 2015.

We focus on Reduced Basis (RB) method based on POD strategy, defining

$$\mathbb{X}_N = span\{\Sigma^m, m = 1, \cdots, N\} \subset \mathbb{X}_N, \text{ where } N \ll \mathcal{N}_N$$

where $\{\Sigma^m\}_{m=1}^N$ are the basis functions obtained from the snapshots $\{X_N(\mu^n)\}_{n=1}^{N_{train}}$.

³J. S. Hesthaven, G. Rozza, and B. Stamm. *Certified Reduced Basis Methods for Parametrized Partial Differential Equations*. Springer International Publishing, 2015.

⁴A. Quarteroni, A. Manzoni, and F. Negri. *Reduced Basis Methods for Partial Differential Equations: An Introduction*. Springer International Publishing, 2015.

We focus on Reduced Basis (RB) method based on POD strategy, defining

$$\mathbb{X}_N = span\{\Sigma^m, m = 1, \cdots, N\} \subset \mathbb{X}_N, \text{ where } N \ll \mathcal{N},$$

where $\{\Sigma^m\}_{m=1}^N$ are the basis functions obtained from the snapshots $\{X_N(\mu^n)\}_{n=1}^{N_{train}}$.

$$\underbrace{G(X(\mu); \mu) = 0}_{\text{Partial differential}} \xrightarrow{\sim} \underbrace{G_{\mathcal{N}}(X_{\mathcal{N}}(\mu); \mu) = 0}_{\text{High Fidelity}} \xrightarrow{\sim} \underbrace{G_{\mathcal{N}}(X_{\mathcal{N}}(\mu); \mu) = 0}_{\text{Reduced Basis}}_{\text{approximation}}$$

Global approach:

Pros: single space encoding all branches **Cons**: larger *N* and higher errors.

³J. S. Hesthaven, G. Rozza, and B. Stamm. *Certified Reduced Basis Methods for Parametrized Partial Differential Equations*. Springer International Publishing, 2015.

⁴A. Quarteroni, A. Manzoni, and F. Negri. *Reduced Basis Methods for Partial Differential Equations: An Introduction*. Springer International Publishing, 2015.

4/11

Federico Pichi ANNs for bifurcating phenomena modelled by nonlinear parametrized PDEs

We focus on Reduced Basis (RB) method based on POD strategy, defining

$$\mathbb{X}_N = span\{\Sigma^m, m = 1, \cdots, N\} \subset \mathbb{X}_N, \text{ where } N \ll \mathcal{N},$$

where $\{\Sigma^m\}_{m=1}^N$ are the basis functions obtained from the snapshots $\{X_N(\mu^n)\}_{n=1}^{N_{train}}$.

$$\underbrace{G(X(\mu); \mu) = 0}_{\text{Partial differential}} \rightsquigarrow \underbrace{G_{\mathcal{N}}(X_{\mathcal{N}}(\mu); \mu) = 0}_{\text{High Fidelity}} \rightsquigarrow \underbrace{G_{\mathcal{N}}(X_{\mathcal{N}}(\mu); \mu) = 0}_{\text{Reduced Basis}}$$

• Global approach:

Pros: single space encoding all branches **Cons**: larger *N* and higher errors.

• Branch-wise approach:

Pros: low dimensional space **Cons**: hidden unsampled branch.

³J. S. Hesthaven, G. Rozza, and B. Stamm. *Certified Reduced Basis Methods for Parametrized Partial Differential Equations*. Springer International Publishing, 2015.

⁴A. Quarteroni, A. Manzoni, and F. Negri. *Reduced Basis Methods for Partial Differential Equations: An Introduction.* Springer International Publishing, 2015.

Motivations for non-intrusive approach

⁵Goal: Investigate efficiently complex **bifurcating** behaviour in a **real-time** context.

⁶How: POD-NN approach combining ROMs and learning of reduced coefficients.

POD-NN approach:

approximate $\pi : \mathcal{P} \subset \mathbb{R}^P \to \mathbb{R}^N$ such that $\mu \mapsto V^T X_N(\mu)$ from a training set given by the pairs $\{(\mu^i, V^T X_N(\mu^i))\}_{i=1}^{N_{train}}$ obtained from the offline POD procedure.

⁵F. Pichi, F. Ballarin, G. Rozza, and J. S. Hesthaven. *Artificial neural network for bifurcating phenomena modelled by nonlinear parametrized PDEs.* Preprint, 2020.

⁶J. S. Hesthaven and S. Ubbiali. *Non-intrusive reduced order modeling of nonlinear problems using neural networks*. Journal of Computational Physics, 363:55–78, 2018.

Navier-Stokes application: the Coanda effect in a channel

NS system for viscous, steady and incompressible flow

$\begin{cases} -\mu\Delta v + v \cdot \nabla v + \nabla p = 0\\ \nabla \cdot v = 0 \end{cases}$	in Ω , in Ω ,		$\int v = v_{in}$	on $\Gamma_{in},$
		with «	v = 0	$on\ \Gamma_0,$
			$(-pn + (\mu \nabla v)n = 0)$	on Γ_{out} ,

ISSUE: For viscosities $\mu \le \mu^* \approx 0.96$ wall-hugging (stable) phenomena occur.

6/11

Federico Pichi ANNs for bifurcating phenomena modelled by nonlinear parametrized PDEs

Navier-Stokes application: the Coanda effect in a channel

SETTING

Parameter space P = 2, $(\mu, w) \in \mathcal{P} = [0.5, 2] \times [0.5, 1.5]$, viscosity and ch. width. RB dimension $N_u = 50$, $N_p = 24$. Network 2 layers, 15 neurons, $N_{train} = 200 \cdot 6$.

 $||u_N - u_m||_{L^2}$ error **POD-NN** speed-up = 10^6 $||u_N - u_{NN}||_{H_2}$ error $\epsilon_{NN}^{\text{max}} = 0.0625, \ \overline{\epsilon}_{NN} = 0.0118.$ 0.06 **RB** speed-up = 1.50.05 $\epsilon_{BB}^{max} = 0.7553, \ \overline{\epsilon}_{RB} = 0.0129.$ 0.04 0.02 Bifurcation diagram 0.01 16 0.00 1.4 14 $\overset{2.0}{\overset{1.8}{\overset{1.6}{\overset{1.4}{\overset{1.2}{\overset{1.2}{\overset{1.0}{\overset{0.8}{\overset{0.6}{\overset{0.6}{\overset{0.6}{\overset{0.8}{\overset{0.6}{\overset{0.8}{{\overset{0.8}{}{\overset{0.8}{\overset{0.8}{}{\overset{0.8}{\overset{0.8}{}{\overset{0.8}{}{\overset{0.8}{}{\overset{0.8}{{}{\overset{0.8}{}{\overset{0.8}{}{\overset{0.8}{}{\overset{0.8}{}{\overset{0.8}{}{\overset{0.8}{{}{\overset{0.8}{}{\overset{0.8}}{\overset{0.8}{}{\overset{0.8}{}{\overset{0.8}{}}{\overset{0.8}{}{\overset{0.8}{}{\overset{0.8}}{\overset{0.8}{}{\overset{0.8}$ 1.2 1.0 , \\? 12 . 0.8 0.6 10 sym(u(15.5, w) = 1.5- 3.1e+0 8 0.00+0 3.1e+01 6 0.0e+0 4 3.1e+0 20 0.00400 3.1e+0 0 - 20 0.00+00 25 50 100 125 175 75 150 Re

Navier-Stokes application: triangular cavity flow

Towards multiple bifurcating regimes:

existence of a critical angle for the parametrized geometry causing a vortex attaching to vertex B increasing the Reynolds number.

SETTING

Parameter space P = 3, $(\nu, \mu_1, \mu_2) \in \mathcal{P} = [2 \cdot 10^{-4}, 1] \times [-0.5, 0.5] \times [-.25, -1]$, viscosity and bottom vertex position. RB dimension $N_u = 100, N_p = 44$. Network 3 layers, 20 neurons, log-equispaced sampling, tanh, epochs, Adam opt.

A reduced manifold based bifurcation diagram

Aim: efficiently reconstruct a bifurcation diagram, where the output is entirely based on the **reduced coefficients** appearing in the RB expansion.

Idea: take advantage of the **non-smoothness** of the manifold, constructing a **detection tool** that is able to track the critical points employing its **curvature**.

Result: L^2 relative error for the vector of the critical points is of the order 10^{-2} .

Figure: Multi-parameter Coanda test case: (Left) Reduced manifold based bifurcation diagram reconstruction. (Right) RB/POD-NN based 3D bifurcation diagram.

Conclusions and Perspectives

- △ We described the general framework for the approximation of bifurcating nonlinear parametrized PDEs.
- \triangle We investigated the intrusive Reduced Basis method to obtain an efficient evaluation of the bifurcation diagrams.
- \bigtriangleup We applied the non-intrusive POD-NN technique to recover the decoupling between offline and online phases.
- \bigtriangleup We presented an application of the methodology to the multi-parameter test cases: the Coanda effect in a channel and the triangular cavity flow.
- \bigtriangleup We developed a new empirical strategy employing the reduced coefficients to recover the bifurcation diagram from the manifold's curvature.

Conclusions and Perspectives

- △ We described the general framework for the approximation of bifurcating nonlinear parametrized PDEs.
- \triangle We investigated the intrusive Reduced Basis method to obtain an efficient evaluation of the bifurcation diagrams.
- \bigtriangleup We applied the non-intrusive POD-NN technique to recover the decoupling between offline and online phases.
- \triangle We presented an application of the methodology to the multi-parameter test cases: the Coanda effect in a channel and the triangular cavity flow.
- \bigtriangleup We developed a new empirical strategy employing the reduced coefficients to recover the bifurcation diagram from the manifold's curvature.

List of publications

- F. Pichi and G. Rozza. Reduced basis approaches for parametrized bifurcation problems held by non-linear Von Kármán equations. *Journal of Scientific Computing*, 81(1):112–135, 2019.
- [2] D. B. P. Huynh, F. Pichi, and G. Rozza. Reduced Basis Approximation and A Posteriori Error Estimation: Applications to Elasticity Problems in Several Parametric Settings, pages 203–247. Springer International Publishing, Cham, 2018.
- [3] M. Pintore, F. Pichi, M. Hess, G. Rozza, and C. Canuto. Efficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method. Advances in Computational Mathematics, 47(1), 2020.
- [4] F. Pichi, A. Quaini, and G. Rozza. A reduced order modeling technique to study bifurcating phenomena: Application to the Gross-Pitaevskii equation. SIAM Journal on Scientific Computing, 42(5):B1115-B1135, 2020.
- [5] F. Pichi, M. Strazzullo, F. Ballarin, and G. Rozza. Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier-Stokes equations and model reduction. ArXiv preprint, arXiv:2010.13506, 2020.
- [6] F. Pichi, J. Eftang, G. Rozza, and A. T. Patera. Reduced order models for the buckling of hyperelastic beams. MIT-FVG "ROM2S" report, 2020.
- [7] F. Pichi, F. Ballarin, G. Rozza, and J. S. Hesthaven. Artificial neural network for bifurcating phenomena modelled by nonlinear parametrized PDEs. Preprint, 2020.
- [8] F. Pichi. Reduced order models for parametric bifurcation problems in nonlinear PDEs. Ph.D. Thesis, 2020.

List of publications

- F. Pichi and G. Rozza. Reduced basis approaches for parametrized bifurcation problems held by non-linear Von Kármán equations. *Journal of Scientific Computing*, 81(1):112–135, 2019.
- [2] D. B. P. Huynh, F. Pichi, and G. Rozza. Reduced Basis Approximation and A Posteriori Error Estimation: Applications to Elasticity Problems in Several Parametric Settings, pages 203–247. Springer International Publishing, Cham, 2018.
- [3] M. Pintore, F. Pichi, M. Hess, G. Rozza, and C. Canuto. Efficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method. Advances in Computational Mathematics, 47(1), 2020.
- [4] F. Pichi, A. Quaini, and G. Rozza. A reduced order modeling technique to study bifurcating phenomena: Application to the Gross-Pitaevskii equation. SIAM Journal on Scientific Computing, 42(5):B1115-B1135, 2020.
- [5] F. Pichi, M. Strazzullo, F. Ballarin, and G. Rozza. Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier-Stokes equations and model reduction. ArXiv preprint, arXiv:2010.13506, 2020.
- [6] F. Pichi, J. Eftang, G. Rozza, and A. T. Patera. Reduced order models for the buckling of hyperelastic beams. MIT-FVG "ROM2S" report, 2020.
- [7] F. Pichi, F. Ballarin, G. Rozza, and J. S. Hesthaven. Artificial neural network for bifurcating phenomena modelled by nonlinear parametrized PDEs. Preprint, 2020.
- [8] F. Pichi. Reduced order models for parametric bifurcation problems in nonlinear PDEs. Ph.D. Thesis, 2020.

Thank for your attention