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Why care about point data®?

* Geoscience Examples

* |ce Sheets: elevation from satellite
altimetry and ice cores

* Ocean: salinity and temperature from
drifting buoys

* Atmosphere Climate: conditions at
weather stations

e And more!

e Typical uses
e Point evaluation of PDE solutions
* PDE Constrained Optimisation
e Variational data assimilation
e Goal based error estimation
 And more!
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Definition: Point Data

1. A “point cloud” {X;} —a set of
spatial coordinates and

2. Values y; (scalar, vector or tensor
valued) at those coordinates. 12




How we deal with point data at the moment

# UFL

# evaluate coefficient f at two
# 2-dimensional points

vals[0] = £([0.2, 0.4])

vals[1l] = £([1.2, 0.5])

# Firedrake (dolfin similar)
# evaluate Function f at two
# 2-dimensional points
from firedrake import *

vals = f.at([0.2, 0.4], [1.2, 0.5])

* UFL expressions of coefficients can be evaluated at given point

coordinates

* Can get values from point clouds



How we deal with point data at the moment

# Firedrake
# UFL # evaluate Function f at two
# evaluate coefficient f at two # 2-dimensional points
r—osgensiong s from firedrake import *

f [1:2, vals = fO.2, 0.41, [1.2, 0.5])
e outside of the UFL type system * end up special-casing point evaluation
of fields in function spaces on code pathways
meshes e Often slow!
* Value driven: no symbolic point
evaluation.



Example Use Case
Point Data Assimilation: A PDE Constrained Optimisation Problem
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Minimization Problem: Gradient Based Optimisation Needs

minJ[u,m] where J = [[u(X;) - y;lI* + cllm/|*
) H—J H_J

subject to misfit regularization
F(um)=0 (Fit of model  (e.g.to ensure
+ boundary conditions to data) smooth fit) Find via solution to the adjoint

problem using %
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Minimization Problem:

minJ[u,m] where J = [[u(X;) - yill* + cllm/||*
) p %r_l

Need to express this in UFL and annotate

it with dolfin-adjoint/pyadjoint Find via solution to the adjoint
problem using %




Solution Part 1: A point
cloud is a mesh Q,,

UFL
* Vertex Cells
* Topological dimension =0

* Geometric dimension = dim(X;) (point
cloud coordinate dimension)

Firedrake
* Vertices at point cloud coordinates {X;}

* Immersed (for now)
* makes implementation simpler

e care about the point data with
respect to field on “parent” mesh ()
(e.g. a PDE solution)

Point cloud {X;} as
an immersed mesh -

of disconnected
vertices
-, c Q-




Solution Part 2: Point data
are functions in a PODG
function space on (1,

u(X;) and y; as
~ fields on Q,,

u, € PODG(Q,)’
"y € PODG(Q,)

(Polynomial degree 0 Discontinuous
Galerkin function space)

* Scalar, vector or tensor valued

* Each function in this function space represents a
complete set of point data

* Vertex coordinates {X;} are fixed*

e Can declare UFL arguments to solve for values at
points {X;}

e Changes: UFL V FIAT V Firedrake V

*unless we represent moving points — something for the future!



How do we use this?
nterpolate into the
noint data space

Point evaluation is now
interpolation into W = PODG((,,)
u, = I(u, W)

v

Rewrite | = [|lu(X;) — ;l|* + clim]|*

)= | A w) - yyidx + climl?
al(u W

f(l(u w) - ) T gy
%K_J

Newly added to

& Firedrake and < dolfin-adjoint

# UFL+Firedrake Pseudocode
# blue is proposed new UFL

# u is a solution from a function space on parent mesh
# m is source term from some function space

vin = VertexOnlyMesh(parent mesh, point cloud coords)
W = FunctionSpace(vm, "”"DG”, 0)

# interpolate
v = TestFunction(W).dual()
u v = interp(u, v) # or u v = v(u)

# create y in W from observation data

# Functional for minimisation
J = assemble( (u v — y)**2 * dx + c*inner(m, m) * dx )

Reduce using control from parameter space
= firedrake adjoint.Control(m)
= firedrake adjoint.ReducedFunctional(J, m)

Oy, B Sk

# Find optimal control
m min = firedrake adjoint.minimize(J, method='Newton-CG’)



't really works!
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* Aim to develop UFL into a Domain Specific
Language (DSL) for specifying model diagnostics

* A user will specify, as some high level integration (e.g. over
points or planes), the diagnostic then code will be generated

Future: UFL for to calculate it
* Example: Ocean current from multiple climate models e.g.
AUtO M ate d Atlantic Meridional Overturning Circulation in Medhaug and
{ \ Furevik 2011 [4]
Di agﬂOStICS * Form compiler can then generate code for

calculating the diagnostic

e Scalable and able to run on big datasets (e.g.
climate) on the HPCs closest to the data.

1 Medhaug, 1., & Furevik, T. (2011). North Atlantic 20th century multidecadal variability in coupled climate models: Sea surface
temperature and ocean overturning circulation. Ocean Science, 7(3), 389-404.

"Dynamic Earth - Ocean Currents”, NASA Goddard Photo and Video, CC BY 2.0.
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Conclusion

* Point data are everywhere and can be treated more rigorously
p'oin{ cloud ixi} as

* We can represent point data as a function in a PODG function
space on a point cloud mesh

* Point evaluations are interpolations into this function space S
* interp proposed as new UFL operator for interpolation

* Can use point data in PDE constrained optimisation problems by
annotating interpolation with pyadjoint/dolfin-adjoint

* First step towards turning UFL into a DSL for automated
diagnostics
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Possible work-around existing limitations

Minimization Problem:
min J[u,m] where J = |lu(X;) - yill? + cllm||?

subject to
Fluum)=0

+ boundary conditions

* Interpolate the point data into some function space on my mesh then
calculate

J = |[u = Yapprox|| + ¢’ llml|?

* Have to make difficult-to-test decisions about appropriate
interpolation hyperparameters to get Y, 5r0x

* Particularly a problem if the point data is sparse



Solution Part 2: Point data are
functions in a PODG function
space on (),

Some Properties:

u(X;) and y; as
fields on 2,

u, € PODG(Q,)’
'y € PODG(Q,)

(Polynomial degree 0 Discontinuous
Galerkin function space)

* Integrating sums values at points

jﬂvuvdx = Z u, (X;)

l

* L2inner product equivalent to |, inner product of each
component (if vector or tensor valued)

(uv:y>L2 = f Uy ydx == Zuv(Xi)y(Xi) = <uv:y)lz

Q i

* Mass matrix is identity matrix
* Non-differentiable

* Reisz map is L2 inner product
(Up, * )z =uy()

* Nodal interpolation is L2 Galerkin projection



Why is this helpful in this example?

* No extra approximations necessary

e Can be rigorous about the statistical interpretation of data
assimilation results via misfit functional (check if errors are normally
distributed for example) and directly investigate different
regularisations.

* Feed back from modeller to experimenter: can quickly model say,
the impact of more measurements vs better SNR with simulated

data.
 Dan and | working on a paper right now to make this point!



* Possible approach:

1. Read-in gridded field data as equivalent finite
element field

2. Create mesh to represent region to integrate:
* Points - “Vertex Only Mesh”

F Utu re. U F L fO 1 * lines “mesh of disconnected lines”
AUtO m ated * Planes “mesh of disconnected planes” etc.
3. Calculate the diagnostic by interpolating onto
D | agn OSU CS thFe> reglon angl performing desired integration
e Point evaluations
* Fluxes etc.

* Note: Requires UFL to be extended to include
interpolation operations in the language e.g.
via the interp form.

"Dynamic Earth - Ocean Currents”, NASA Goddard Photo and Video, CC BY 2.0.
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Next Steps CL .

Point Data o

* Demonstration on real models showing advantages v. ° ..

* Moving points (optional) L, L
X °

Automated Diagnostics

* Higher dimension disconnected mesh abstractions (lines, planes and
polyhedra) for interpolation onto

e Define the interpolation operations e.g. via supermeshing
* Improve dataset parsing tools
* Integration with existing tool-chains e.g. Pangeo




