Imperial College @v‘ f irec[rakg

London

Making point sets first class
in UFL and Firedrake

Reuben W. Nixon-Hill*2, Daniel Shapero3, Colin J. Cotter?, David A. Ham?

1 Science and Solutions for a Changing Planet DTP, Grantham Institute for
Climate Change and the Environment, Imperial College London

2 Department of Mathematics, Imperial College London

3 Polar Science Center, Applied Physics Laboratory, University of Washington

1 Science and
G rantham I nStItute Solutions for a ‘ Natural
Climate Change and the Environment [ol{ER I R ENE! Environment .
An institute of Imperial College London DTP Research Council

Why care about point data®?

* Geoscience Examples

* |ce Sheets: elevation from satellite
altimetry and ice cores

* Ocean: salinity and temperature from
drifting buoys

* Atmosphere Climate: conditions at
weather stations

e And more!

e Typical uses
e Point evaluation of PDE solutions
* PDE Constrained Optimisation
e Variational data assimilation
e Goal based error estimation
 And more!

"File:Weather Buoy MDS.jpg" by MDS is licensed with CC BY-SA 4.0. To view a copy of this license, visit pttps.//creativecommons,org/licenses/bv-sa/4.0

"Garden Wall Weather Station, MT" by U.S. Geological Survey is marked under CCO 1.0. To view the terms, visit

"Ice core sampling in Green Bay, Lake Michigan" by NOAA Great Lakes Environmental Research Laboratory is licensed with CC BY-SA 2.0. To view a copy of this license, visit https://creaty
"2 Geospace PE3 geophones, for near-field studies," is licensed with CC BY-NC-SA 4.0. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/cc0/1.0/
https://creativecommons.org/licenses/by-sa/2.0/

Definition: Point Data

1. A “point cloud” {X;} —a set of
spatial coordinates and

2. Values y; (scalar, vector or tensor
valued) at those coordinates. 12

How we deal with point data at the moment

UFL

evaluate coefficient f at two
2-dimensional points

vals[0] = £([0.2, 0.4])

vals[1l] = £([1.2, 0.5])

Firedrake (dolfin similar)
evaluate Function f at two
2-dimensional points
from firedrake import *

vals = f.at([0.2, 0.4], [1.2, 0.5])

* UFL expressions of coefficients can be evaluated at given point

coordinates

* Can get values from point clouds

How we deal with point data at the moment

Firedrake
UFL # evaluate Function f at two
evaluate coefficient f at two # 2-dimensional points
r—osgensiong s from firedrake import *

f [1:2, vals = fO.2, 0.41, [1.2, 0.5])
e outside of the UFL type system * end up special-casing point evaluation
of fields in function spaces on code pathways
meshes e Often slow!
* Value driven: no symbolic point
evaluation.

Example Use Case
Point Data Assimilation: A PDE Constrained Optimisation Problem

Model of : o e e . o
phenomenon o Model solution = “GEggS Measured data
hed * at specific ' Fenios : o
on meshe - [| 6§ G at specific

domain) : u(Xl-). K § Firedrake| .Points

Yyiat Xj

F(uum)=20

+ boundary conditions

<. dolfin-adjoint

forsomem -

Minimization Problem: Gradient Based Optimisation Needs

minJ[u,m] where J = [[u(X;) - y;lI* + cllm/|*
) H—J H_J

subject to misfit regularization
F(um)=0 (Fit of model (e.g.to ensure
+ boundary conditions to data) smooth fit) Find via solution to the adjoint

problem using %

Example Use Case
Point Data Assimilation: A PDE Constrained Optimisation Problem

4
4
4
.

Model of D e .
S Model solution W s §
phenomenon L : . T Measured data
on meshed SUCRESHE s FEniCS “at specific
A, —— points ™~ &9 ProJece .
(;:rr(laln < : ulX;) - G Firedrake\| .PoINts x
u,m) = o , ,
botnUan codiBons for'some m - % dolfin-adjoint ,yl C P .
. : +[—
* i «
A
4 N\

Minimization Problem:

minJ[u,m] where J = [[u(X;) - yill* + cllm/||*
) p %r_l

Need to express this in UFL and annotate

it with dolfin-adjoint/pyadjoint Find via solution to the adjoint
problem using %

Solution Part 1: A point
cloud is a mesh Q,,

UFL
* Vertex Cells
* Topological dimension =0

* Geometric dimension = dim(X;) (point
cloud coordinate dimension)

Firedrake
* Vertices at point cloud coordinates {X;}

* Immersed (for now)
* makes implementation simpler

e care about the point data with
respect to field on “parent” mesh ()
(e.g. a PDE solution)

Point cloud {X;} as
an immersed mesh -

of disconnected
vertices
-, c Q-

Solution Part 2: Point data
are functions in a PODG
function space on (1,

u(X;) and y; as
~ fields on Q,,

u, € PODG(Q,)’
"y € PODG(Q,)

(Polynomial degree 0 Discontinuous
Galerkin function space)

* Scalar, vector or tensor valued

* Each function in this function space represents a
complete set of point data

* Vertex coordinates {X;} are fixed*

e Can declare UFL arguments to solve for values at
points {X;}

e Changes: UFL V FIAT V Firedrake V

*unless we represent moving points — something for the future!

How do we use this?
nterpolate into the
noint data space

Point evaluation is now
interpolation into W = PODG((,,)
u, = I(u, W)

v

Rewrite | = [|lu(X;) — ;l|* + clim]|*

)= | A w) - yyidx + climl?
al(u W

f(l(u w) -) T gy
%K_J

Newly added to

& Firedrake and < dolfin-adjoint

UFL+Firedrake Pseudocode
blue is proposed new UFL

u is a solution from a function space on parent mesh
m is source term from some function space

vin = VertexOnlyMesh(parent mesh, point cloud coords)
W = FunctionSpace(vm, "”"DG”, 0)

interpolate
v = TestFunction(W).dual()
u v = interp(u, v) # or u v = v(u)

create y in W from observation data

Functional for minimisation
J = assemble((u v — y)**2 * dx + c*inner(m, m) * dx)

Reduce using control from parameter space
= firedrake adjoint.Control(m)
= firedrake adjoint.ReducedFunctional(J, m)

Oy, B Sk

Find optimal control
m min = firedrake adjoint.minimize(J, method='Newton-CG’)

't really works!

1.0 1
0.8 1
0.6 1
0.4 1
0.2 1

0.0 1

1.0
0.8 1
0.6
0.4
0.2 1

0.0 1

Estimating Log-Conductivity q

where k = kge? and —V - kVu = f for known f

True u

Sampled Noisy u

—

True q

Estimated g

-4

* Aim to develop UFL into a Domain Specific
Language (DSL) for specifying model diagnostics

* A user will specify, as some high level integration (e.g. over
points or planes), the diagnostic then code will be generated

Future: UFL for to calculate it
* Example: Ocean current from multiple climate models e.g.
AUtO M ate d Atlantic Meridional Overturning Circulation in Medhaug and
{ \ Furevik 2011 [4]
Di agﬂOStICS * Form compiler can then generate code for

calculating the diagnostic

e Scalable and able to run on big datasets (e.g.
climate) on the HPCs closest to the data.

1 Medhaug, 1., & Furevik, T. (2011). North Atlantic 20th century multidecadal variability in coupled climate models: Sea surface
temperature and ocean overturning circulation. Ocean Science, 7(3), 389-404.

"Dynamic Earth - Ocean Currents”, NASA Goddard Photo and Video, CC BY 2.0.

https://creativecommons.org/licenses/by/2.0/

Conclusion

* Point data are everywhere and can be treated more rigorously
p'oin{ cloud ixi} as

* We can represent point data as a function in a PODG function
space on a point cloud mesh

* Point evaluations are interpolations into this function space S
* interp proposed as new UFL operator for interpolation

* Can use point data in PDE constrained optimisation problems by
annotating interpolation with pyadjoint/dolfin-adjoint

* First step towards turning UFL into a DSL for automated
diagnostics

Get in touch! reuben.nixon-hilll10@imperial.ac.uk

Science and
Solutions for a ~ Eatgral
Changing Planet nvironment]
DTP Research Council

u(X;) and y; as

" fields on Q, ’
u, € PODG(Q,)"

"y € PODG(Q,)
(Polynomial degree 0 Discontinuous
Galerkin function space)

\§ Firedrake Imperial College Grantham Institute

Climate Change and the Environment

London An institute of Imperial College London

Possible work-around existing limitations

Minimization Problem:
min J[u,m] where J = |lu(X;) - yill? + cllm||?

subject to
Fluum)=0

+ boundary conditions

* Interpolate the point data into some function space on my mesh then
calculate

J = |[u = Yapprox|| + ¢’ llml|?

* Have to make difficult-to-test decisions about appropriate
interpolation hyperparameters to get Y, 5r0x

* Particularly a problem if the point data is sparse

Solution Part 2: Point data are
functions in a PODG function
space on (),

Some Properties:

u(X;) and y; as
fields on 2,

u, € PODG(Q,)’
'y € PODG(Q,)

(Polynomial degree 0 Discontinuous
Galerkin function space)

* Integrating sums values at points

jﬂvuvdx = Z u, (X;)

l

* L2inner product equivalent to |, inner product of each
component (if vector or tensor valued)

(uv:y>L2 = f Uy ydx == Zuv(Xi)y(Xi) = <uv:y)lz

Q i

* Mass matrix is identity matrix
* Non-differentiable

* Reisz map is L2 inner product
(Up, *)z =uy()

* Nodal interpolation is L2 Galerkin projection

Why is this helpful in this example?

* No extra approximations necessary

e Can be rigorous about the statistical interpretation of data
assimilation results via misfit functional (check if errors are normally
distributed for example) and directly investigate different
regularisations.

* Feed back from modeller to experimenter: can quickly model say,
the impact of more measurements vs better SNR with simulated

data.
 Dan and | working on a paper right now to make this point!

* Possible approach:

1. Read-in gridded field data as equivalent finite
element field

2. Create mesh to represent region to integrate:
* Points - “Vertex Only Mesh”

F Utu re. U F L fO 1 * lines “mesh of disconnected lines”
AUtO m ated * Planes “mesh of disconnected planes” etc.
3. Calculate the diagnostic by interpolating onto
D | agn OSU CS thFe> reglon angl performing desired integration
e Point evaluations
* Fluxes etc.

* Note: Requires UFL to be extended to include
interpolation operations in the language e.g.
via the interp form.

"Dynamic Earth - Ocean Currents”, NASA Goddard Photo and Video, CC BY 2.0.

https://creativecommons.org/licenses/by/2.0/

Next Steps CL .

Point Data o

* Demonstration on real models showing advantages v. ° ..

* Moving points (optional) L, L
X °

Automated Diagnostics

* Higher dimension disconnected mesh abstractions (lines, planes and
polyhedra) for interpolation onto

e Define the interpolation operations e.g. via supermeshing
* Improve dataset parsing tools
* Integration with existing tool-chains e.g. Pangeo

