
Making point sets first class
in UFL and Firedrake

Reuben W. Nixon-Hill1,2, Daniel Shapero3, Colin J. Co1er2, David A. Ham2

1 Science and Solutions for a Changing Planet DTP, Grantham Institute for
Climate Change and the Environment, Imperial College London
2 Department of Mathematics, Imperial College London
3 Polar Science Center, Applied Physics Laboratory, University of Washington

Why care about point data?
• Geoscience Examples

• Ice Sheets: elevation from satellite
altimetry and ice cores

• Ocean: salinity and temperature from
drifting buoys

• Atmosphere Climate: conditions at
weather stations

• And more!
• Typical uses

• Point evaluation of PDE solutions
• PDE Constrained Optimisation

• Variational data assimilation
• Goal based error estimation
• And more!

"File:Weather Buoy MDS.jpg" by MDS is licensed with CC BY-SA 4.0. To view a copy of this license, visit hHps://creaJvecommons.org/licenses/by-sa/4.0
"Garden Wall Weather StaJon, MT" by U.S. Geological Survey is marked under CC0 1.0. To view the terms, visit hHps://creaJvecommons.org/licenses/cc0/1.0/
"Ice core sampling in Green Bay, Lake Michigan" by NOAA Great Lakes Environmental Research Laboratory is licensed with CC BY-SA 2.0. To view a copy of this license, visit hHps://creaJvecommons.org/licenses/by-sa/2.0/
"2 Geospace PE3 geophones, for near-field studies," is licensed with CC BY-NC-SA 4.0. To view a copy of this license, visit hHps://creaJvecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/cc0/1.0/
https://creativecommons.org/licenses/by-sa/2.0/

Definition: Point Data

1. A “point cloud” {𝑋!} – a set of
spa5al coordinates and

2. Values 𝑦! (scalar, vector or tensor
valued) at those coordinates. 1.2

61.6

-5.0
or

x

y

How we deal with point data at the moment

• UFL expressions of coefficients can be evaluated at given point
coordinates
• Can get values from point clouds

Firedrake (dolfin similar)
evaluate Function f at two
2-dimensional points
from firedrake import *
...
vals = f.at([0.2, 0.4], [1.2, 0.5])

UFL
evaluate coefficient f at two
2-dimensional points
vals[0] = f([0.2, 0.4])
vals[1] = f([1.2, 0.5])

How we deal with point data at the moment
Firedrake
evaluate Function f at two
2-dimensional points
from firedrake import *
...
vals = f.at([0.2, 0.4], [1.2, 0.5])

• outside of the UFL type system
of fields in function spaces on
meshes

• Value driven: no symbolic point
evaluation.

•

• end up special-casing point evaluaAon
code pathways

• ODen slow!

UFL
evaluate coefficient f at two
2-dimensional points
vals[0] = f([0.2, 0.4])
vals[1] = f([1.2, 0.5])

Need to express this in UFL and annotate
it with dolfin-adjoint/pyadjoint

Solution Part 1: A point
cloud is a mesh Ω!
UFL
• Vertex Cells
• Topological dimension = 0
• Geometric dimension = dim(𝑋!) (point

cloud coordinate dimension)
Firedrake
• VerLces at point cloud coordinates {𝑋!}
• Immersed (for now)

• makes implementaLon simpler
• care about the point data with

respect to field on “parent” mesh Ω
(e.g. a PDE soluLon)

• Scalar, vector or tensor valued

• Each funcLon in this funcLon space represents a
complete set of point data

• Vertex coordinates {𝑋!} are fixed*

• Can declare UFL arguments to solve for values at
points {𝑋!}

• Changes: UFL ✔ FIAT ✔ Firedrake ✔

*unless we represent moving points – something for the future!

Solution Part 2: Point data
are functions in a P0DG
function space on Ω!

How do we use this?
Interpolate into the
point data space

UFL+Firedrake Pseudocode
blue is proposed new UFL

u is a solution from a function space on parent_mesh
m is source term from some function space

vm = VertexOnlyMesh(parent_mesh, point_cloud_coords)
W = FunctionSpace(vm, ”DG”, 0)

interpolate
v = TestFunction(W).dual()
u_v = interp(u, v) # or u_v = v(u)

... # create y in W from observation data

Functional for minimisation
J = assemble((u_v – y)**2 * dx + c*inner(m, m) * dx)

Reduce using control from parameter space
m ̂ = firedrake_adjoint.Control(m)
Ĵ = firedrake_adjoint.ReducedFunctional(J, m)̂

Find optimal control
m_min = firedrake_adjoint.minimize(Ĵ, method='Newton-CG’)

Point evaluaEon is now
interpolaEon into W = P0DG(Ω")

𝑢" = 𝐼(𝑢,𝑊)

Rewrite 𝐽 = 𝑢 𝑋! − 𝑦! # + 𝑐 𝑚 #

𝐽 = 7
$!
(𝐼(𝑢,𝑊) − 𝑦)#𝑑𝑥 + 𝑐 𝑚 #

𝜕𝐽
𝜕𝑢 = 7

$!
(𝐼(𝑢,𝑊) − 𝑦)

𝝏𝑰(𝒖,𝑾)
𝝏𝒖 𝑑𝑥

Newly added to
and

It really works!

Future: UFL for
Automated
DiagnosCcs

• Aim to develop UFL into a Domain Specific
Language (DSL) for specifying model diagnostics
• A user will specify, as some high level integration (e.g. over

points or planes), the diagnostic then code will be generated
to calculate it

• Example: Ocean current from multiple climate models e.g.
Atlantic Meridional Overturning Circulation in Medhaug and
Furevik 2011 [4]

• Form compiler can then generate code for
calculating the diagnostic
• Scalable and able to run on big datasets (e.g.

climate) on the HPCs closest to the data.

1 Medhaug, I., & Furevik, T. (2011). North AtlanOc 20th century mulOdecadal variability in coupled climate models: Sea surface
temperature and ocean overturning circulaOon. Ocean Science, 7(3), 389-404.
"Dynamic Earth - Ocean Currents”, NASA Goddard Photo and Video, CC BY 2.0. hEps://creaIvecommons.org/licenses/by/2.0/

https://creativecommons.org/licenses/by/2.0/

Conclusion
• Point data are everywhere and can be treated more rigorously
• We can represent point data as a func?on in a P0DG func?on

space on a point cloud mesh
• Point evalua?ons are interpola?ons into this func?on space
• interp proposed as new UFL operator for interpola?on
• Can use point data in PDE constrained op?misa?on problems by

annota?ng interpola?on with pyadjoint/dolfin-adjoint
• First step towards turning UFL into a DSL for automated

diagnos?cs
Get in touch! reuben.nixon-hill10@imperial.ac.uk

Possible work-around existing limitations

• Interpolate the point data into some func?on space on my mesh then
calculate

𝐽 = 𝑢 − 𝑦*++,-.
/
+ 𝑐0 𝑚 /

• Have to make difficult-to-test decisions about appropriate
interpola?on hyperparameters to get 𝑦*++,-.,

• Par?cularly a problem if the point data is sparse

MinimizaEon Problem:
min
%,'

𝐽 𝑢,𝑚 where 𝐽 = 𝑢 𝑋! − 𝑦! # + 𝑐 𝑚 #

subject to
𝐹 𝑢,𝑚 = 0

+ boundary condi-ons

Some Proper)es:
• Integra)ng sums values at points

"
"!
𝑢#𝑑𝑥 ='

$

𝑢# 𝑋$

• L2 inner product equivalent to l2 inner product of each
component (if vector or tensor valued)

𝑢# , 𝑦 %" = "
"!
𝑢# 𝑦 𝑑𝑥 = ⋯ ='

$

𝑢# 𝑋$ 𝑦 𝑋$ = 𝑢# , 𝑦 &"

• Mass matrix is iden)ty matrix
• Non-differen)able
• Reisz map is L2 inner product

𝑢# , , %" = 𝑢#' ,
• Nodal interpola)on is L2 Galerkin projec)on

Solution Part 2: Point data are
functions in a P0DG function
space on Ω!

Why is this helpful in this example?

• No extra approxima?ons necessary
• Can be rigorous about the sta9s9cal interpreta9on of data

assimila?on results via misfit func?onal (check if errors are normally
distributed for example) and directly inves?gate different
regularisa?ons.

• Feed back from modeller to experimenter: can quickly model say,
the impact of more measurements vs beUer SNR with simulated
data.

• Dan and I working on a paper right now to make this point!

Future: UFL for
Automated
DiagnosCcs

• Possible approach:
1. Read-in gridded field data as equivalent finite

element field
2. Create mesh to represent region to integrate:

• Points - “Vertex Only Mesh”
• lines “mesh of disconnected lines”
• Planes “mesh of disconnected planes” etc.

3. Calculate the diagnostic by interpolating onto
the region and performing desired integration
• Point evaluations
• Fluxes etc.

• Note: Requires UFL to be extended to include
interpolation operations in the language e.g.
via the interp form.

"Dynamic Earth - Ocean Currents”, NASA Goddard Photo and Video, CC BY 2.0. hEps://creaIvecommons.org/licenses/by/2.0/

https://creativecommons.org/licenses/by/2.0/

Next Steps

Point Data
• Demonstra?on on real models showing advantages
• Moving points (op?onal)

Automated Diagnos9cs
• Higher dimension disconnected mesh abstrac?ons (lines, planes and

polyhedra) for interpola?on onto
• Define the interpola?on opera?ons e.g. via supermeshing
• Improve dataset parsing tools
• Integra?on with exis?ng tool-chains e.g. Pangeo

x

y

