

Non-intrusive ROM of linear poroelasticity in porous media (https://arxiv.org/abs/2101.11810)

Teeratorn Kadeethum, Francesco Ballarin, and Nikolaos Bouklas

Governing equations

Momentum balance equation

$$\nabla \cdot \sigma'(u) - \alpha \nabla \cdot (p\mathbf{I}) + f = 0 \quad \text{in} \quad \Omega \times \mathbb{T},$$
$$u = u_D \quad \text{on} \quad \partial \Omega_u \times \mathbb{T},$$
$$\sigma(u) \cdot \mathbf{n} = t_D \quad \text{on} \quad \partial \Omega_t \times \mathbb{T},$$
$$u = u_0 \quad \text{in} \quad \Omega \text{ at } t = 0,$$

Mass balance equation

$$\left(\frac{1}{M} + \frac{\alpha^2}{K}\right) \frac{\partial p}{\partial t} + \frac{\alpha}{K} \frac{\partial \sigma_v}{\partial t} - \kappa \nabla p = g \quad \text{in} \quad \Omega \times \mathbb{T},$$

$$p = p_D \quad \text{on} \quad \partial \Omega_p \times \mathbb{T},$$

$$-\kappa \nabla p \cdot \mathbf{n} = q_D \quad \text{on} \quad \partial \Omega_q \times \mathbb{T},$$

$$p = p_0 \quad \text{in} \quad \Omega \text{ at } t = 0,$$

Pic from: J.Choo. Stabilized mixed continuous/enriched Galerkin formulations for locally mass conservative poromechanics. CMAME. 2019.

Full-order model (FOM) – finite element

$$\begin{array}{c}
\textbf{Monolithic} \\
\begin{bmatrix}
\mathscr{J}_{uu}^{\text{CG}_2 \times \text{CG}_2} & \mathscr{J}_{up}^{\text{CG}_2 \times \text{DG}_1} \\
\mathscr{J}_{pu}^{\text{DG}_1 \times \text{CG}_2} & \mathscr{J}_{pp}^{\text{DG}_1 \times \text{DG}_1}
\end{bmatrix} \begin{cases}
\begin{pmatrix}
\left(\delta u_h^n\right)^{\text{CG}_2} \\
\left(\delta p_h^n\right)^{\text{DG}_1}
\end{bmatrix} = -\begin{cases}
R_u^{\text{CG}_2} \\
R_p^{\text{DG}_1}
\end{cases}$$

CG: for displacement field

DG: for pressure field

Time-stepping

$$BDF_1(\varphi^n) := \frac{1}{\Delta t^n} \left(\varphi^n - \varphi^{n-1}\right)$$

https://www.sciencedirect.com/science/article/pii/S0309170819312576 https://link.springer.com/article/10.1007/s11004-020-09893-y https://www.sciencedirect.com/science/article/pii/S0021999120308044

Reduced-order model (ROM) – data driven

Proper orthogonal decomposition (POD)

Finite element snapshots

Proper orthogonal decomposition (POD)

Single compression

Proper orthogonal decomposition (POD)

Nested compression

Artificial neural networks (ANN)

Artificial neural networks (ANN)

Terzaghi's consolidation problem

Consolidation problem with 2-layered material

$\mu = (\nu, \alpha) \in [0.1, 0.4] \times [0.4, 1.0]$

Heterogeneous media - POD

Heterogeneous media - POD

Wall time used to perform POD

	$N_{\rm int} = 2$	$N_{int} = 5$	$N_{\rm int} = 10$	$N_{\rm int}=\infty$
M = 100	100	125	170	1574
M = 400	437	650	1437	36705
M = 900	1168	2319	6475	268754

Nested compression could save a lot of time

Heterogeneous media – 1000 test cases

snapshot = 900, reduced basis = 20(10), hidden layers = 5, and neurons = 10 snapshot = 400, reduced basis = 10(5), hidden layers = 3, and neurons = 7

time [second]

Heterogeneous media – costs

Table 9: Example 4: Comparison of the wall time (seconds) used for sensitivity analysis

	$M = 400 \pmod{1}$	$M = 900 \pmod{2}$	FOM
Train FOM snapshots	7160	16020	-
Perform POD	1437	6475	-
Train ANN	7064	18492	-
Prediction - 1000 testing μ	2895	3160	17790
Prediction - per testing μ	2.9	3.2	17.8

Taking the training time into account, we need to perform at least 1050 and 2850 inquiries (online phase) to have a break-even point for model 1 and model 2, respectively.

Current works

- Nonlinear compression autoencoder and its variants
- Adaptive mesh and timestep
- Physics-informed neural networks

Thank you © https://arxiv.org/abs/2101.11810 https://gitlab.com/multiphenics/multiphenics https://gitlab.com/RBniCS/RBniCS

RBniCS multiphenics