

Plasma modelling using FEniCS and FEDM

A. P. Jovanović, D. Loffhagen, and M. M. Becker

Leibniz Institute for Plasma Science and Technology (INP) Felix-Hausdorff-Str. 2, 17489 Greifswald

FEniCS 2021 25 March 2021

Funded by the Deutsche Forschungsgemeinschaft project number 407462159

FROM IDEA TO PROTOTYPE

- Plasma is a gaseous state in which free electrons and ionised atoms or molecules exist.
- Non-thermal low-temperature plasmas considered here are usually produced by electric discharges.
- They are used for different applications, such as chemical and surface processing, or biomedical applications.
- In order to describe physical and chemical processes in plasma, experimental studies are often supplemented by numerical modelling.

- Plasma is a gaseous state in which free electrons and ionised atoms or molecules exist.
- Non-thermal low-temperature plasmas considered here are usually produced by electric discharges.
- They are used for different applications, such as chemical and surface processing, or biomedical applications.
- In order to describe physical and chemical processes in plasma, experimental studies are often supplemented by numerical modelling.

- Plasma is a gaseous state in which free electrons and ionised atoms or molecules exist.
- Non-thermal low-temperature plasmas considered here are usually produced by electric discharges.
- They are used for different applications, such as chemical and surface processing, or biomedical applications.
- In order to describe physical and chemical processes in plasma, experimental studies are often supplemented by numerical modelling.

- Plasma is a gaseous state in which free electrons and ionised atoms or molecules exist.
- Non-thermal low-temperature plasmas considered here are usually produced by electric discharges.
- They are used for different applications, such as chemical and surface processing, or biomedical applications.
- In order to describe physical and chemical processes in plasma, experimental studies are often supplemented by numerical modelling.

Governing equations

Poisson's equation for electric potential

$$\begin{aligned} -\varepsilon_0 \varepsilon_r \nabla^2 \phi &= \sum_p q_p n_p \\ \mathbf{E} &= -\nabla \phi \end{aligned}$$

Electron energy balance equation

$$\begin{aligned} \frac{\partial w_{\rm e}}{\partial t} + \nabla \cdot \mathbf{Q}_{\rm e} &= -e_0 \mathbf{E} \cdot \mathbf{\Gamma}_{\rm e} + \widetilde{S}_{\rm e} \\ \mathbf{Q}_{\rm e} &= -\frac{5}{3} b_{\rm e} \mathbf{E} w_{\rm e} - \nabla (\frac{5}{3} D_{\rm e} w_{\rm e}) \\ \widetilde{S}_{\rm e} &= \sum_{j=1}^{N_r} \Delta \varepsilon_j R_j \end{aligned}$$

Continuity equation for particle densities

$$\frac{\partial n_p}{\partial t} + \nabla \cdot \mathbf{\Gamma}_p = S_p$$
$$\mathbf{\Gamma}_p = \operatorname{sgn}(q_p) b_p \mathbf{E} n_p - \nabla (D_p n_p)$$
$$S_p = \sum_{j=1}^{N_r} (G_{pj} - L_{pj}) k_j \prod_{i=1}^{N_s} n_i^{\beta_{ij}}$$

- In order to solve the equations, appropriate set of boundary conditions is used:
 - Dirichlet and Robin boundary conditions for Poisson's equation
 - Robin boundary conditions for continuity equations, and electron energy balance equation.

M. M. Becker et al., J. Phys. D: Appl. Phys. **46** (2013) 355203 *G. J. M. Hagelaar et al., Phys. Rev. E* **62** (2000) 1452

Challenges in plasma modelling

For appropriate description of the processes in plasma, lots of particles, and consequently, lots of processes need to be taken into account.

Table 1 Collision processes related to TMS included in the basic reaction kinetics model in addition to the argon model reported in [34]

Index	Reaction	Rate coefficient	References
Elastic	electron collisions		
1	$(CH_3)_4Si + e \rightarrow (CH_3)_4Si + e$	$f(u_{\rm e})$	[45]
Electro	n impact excitation and dissociation		
2	$(CH_3)_4Si + e \rightarrow (CH_3)_4Si[v_1] + e$	$f(u_{\rm e})$	[45]
3	$(CH_3)_4Si + e \rightarrow (CH_3)_4Si[v_2] + e$	$f(u_{\rm e})$	[45]
4	$(CH_3)_4Si + e \rightarrow (CH_3)_3Si + CH_3 + e$	$f(u_{\rm e})$	[20, 45]
Electro	n impact ionization and detachment		
5	$(CH_3)_4Si + e \rightarrow (CH_3)_3Si^+ + CH_3 + 2e$	$f(u_{\rm e})$	[46]
6	$(CH_3)_3Si^- + e \rightarrow (CH_3)_3Si + 2e$	$f(u_{\rm e})$	[47-49]
Dissoc	iative electron attachment		
7	$(CH_3)_4Si + e \rightarrow (CH_3)_3Si^- + CH_3$	$f(u_{\rm e})$	[45]
lon-mo	lecule reactions		
8	$Ar^+ + (CH_3)_4Si \rightarrow (CH_3)_3Si^+ + CH_3 + Ar[1p_0]$	1.5×10^{-15}	[36, 50]
9	$Ar_2^+ + (CH_3)_4Si \rightarrow (CH_3)_3Si^+ + CH_3 + 2 Ar[1p_0]$	1.2×10^{-15}	[36, 50]
Quencl	ning of excited argon species leading to Penning ionization		
10–16	$\operatorname{Ar}^{*} + (\operatorname{CH}_{3})_{4}\operatorname{Si} \rightarrow (\operatorname{CH}_{3})_{3}\operatorname{Si}^{+} + \operatorname{CH}_{3} + \operatorname{Ar}[1p_{0}] + e$	$k_{\rm M}^{\rm Pl}$	See text
Quencl	ning of excited argon species leading to neutral products	M,Ar	
17–23	$\mathrm{Ar}^* + (\mathrm{CH}_3)_4\mathrm{Si} \rightarrow (\mathrm{CH}_3)_3\mathrm{Si} + \mathrm{CH}_3 + \mathrm{Ar}[1p_0]$	k ^Q _{MAr} *	See text
24–27	$\mathrm{Ar}_2^* + (\mathrm{CH}_3)_4\mathrm{Si} \rightarrow (\mathrm{CH}_3)_3\mathrm{Si} + \mathrm{CH}_3 + 2 \ \mathrm{Ar}[1p_0]$	k _{M,Ar*}	Analogous to Ar [*] [51, 52]

Index	Reaction	Rate coefficient	References	
552	$\rm CH_4 + C_2H \rightarrow C_2H_2 + CH_3$	2.3×10^{-18}	[130]	
553	$CH_4 + C_2 \rightarrow C_2H + CH_3$	1.7×10^{-17}	[131]	
554	$CH_4 + CH \rightarrow C_2H_4 + H$	9.0×10^{-17}	[132]	
555	$C_2H_6 + C_2H \rightarrow C_2H_2 + C_2H_5$	3.5×10^{-17}	[133]	
556	$C_2H_6 + C_2 \rightarrow C_2H + C_2H_5$	1.6×10^{-16}	[134]	
557	$C_2H_6 + CH \rightarrow C_2H_4 + CH_3$	1.3×10^{-16}	[129]	
558	$C_2H_6 + CH \rightarrow C_3H_6 + H$	3.0×10^{-17}	[129]	
559	$C_2H_5 + C_2H_5 (+M) \rightarrow C_4H_{10} (+M)$	1.9×10^{-17}	[126]	
560	$\mathrm{C_2H_5} + \mathrm{C_2H_5} \rightarrow \mathrm{C_2H_6} + \mathrm{C_2H_4}$	2.4×10^{-18}	[126]	
561	$C_2H_5 + C_2H_3 (+M) \rightarrow C_4H_8 (+M)$	2.5×10^{-17}	[135]	
562	$C_2H_5 + C_2H_3 \rightarrow 2C_2H_4$	8.0×10^{-19}	[135]	
563	$C_2H_5 + C_2H_3 \rightarrow C_2H_6 + C_2H_2$	8.0×10^{-19}	[135]	
564	$C_2H_5 + CH_2 \rightarrow CH_3 + C_2H_4$	3.0×10^{-17}	[135]	
565	$C_2H_5 + H \rightarrow 2CH_3$	6.0×10^{-17}	[126]	
566	$\mathrm{C_2H_4} + \mathrm{C_2H} \rightarrow \mathrm{C_2H_2} + \mathrm{C_2H_3}$	1.2×10^{-16}	[133]	
567	$C_2H_4 + C_2 \rightarrow 2C_2H_2$	3.3×10^{-16}	[134]	
568	$C_2H_4 + H(+M) \rightarrow C_2H_5(+M)$	1.1×10^{-18}	[126, 127]	
569	$C_2H_3 + C_2H_3 (+M) \rightarrow C_4H_6 (+M)$	1.6×10^{-17}	[135]	
570	$C_2H_3 + C_2H_3 \rightarrow C_2H_4 + C_2H_2$	1.6×10^{-18}	[135]	
571	$C_2H_3 + CH_2 \rightarrow CH_3 + C_2H_2$	3.0×10^{-17}	[135]	
572	$C_2H_3 + H \rightarrow C_2H_2 + H_2$	2.0×10^{-17}	[126]	
573	$C_2H + CH_2 \rightarrow CH + C_2H_2$	3.0×10^{-17}	[135]	
574	$C_2H + H(+M) \rightarrow C_2H_2(+M)$	3.0×10^{-16}	[135]	
575	$C_2 + H_2 \rightarrow C_2H + H$	1.5×10^{-18}	[136]	

D. Loffhagen et al., Plasma Chem. Plasma Process. 41 (2021) 289

- Chemical reactions in plasma model usually lead to stiff system of equations.
- Time scale of the problem spans from picoseconds to tens of seconds.

FEDM (Finite Element Discharge Modelling) code

- Transport and reaction rate coefficients are imported into model in form of functions or look-up tables.
- Source term definition is automated based on the reaction kinetic scheme.
- Time discretization is done using backward differentiation formula.

$$y_{n+2} - \frac{(1+\omega_{n+1})^2}{1+2\omega_{n+1}}y_{n+1} + \frac{\omega_{n+1}^2}{1+2\omega_{n+1}}y_n = \Delta t_{n+2}\frac{1+\omega_{n+1}}{1+2\omega_{n+1}}f_{n+2}$$

• Time stepping control is done using either *H*211*b* or PI.3.4 controllers.

$$\Delta t_{n+1} = \left(\frac{0.8TOL}{\hat{r}_{n+1}}\right)^{0.3/k} \left(\frac{\hat{r}_n}{\hat{r}_{n+1}}\right)^{0.4/k} \Delta t_n$$

$$\Delta t_{n+1} = \left(\frac{0.8TOL}{\hat{r}_n}\right)^{0.25/k} \left(\frac{0.8TOL}{\hat{r}_{n-1}}\right)^{0.25/k} \left(\frac{\Delta t^n}{\Delta t^{n-1}}\right)^{-0.25} \Delta t^n$$

- E. Alberdi Celaya et al., Procedia Comput. Sci., 29, 1014–1026 (2014)
- G. Söderlind and L. Wang, J. Comput. Appl. Math., 185, 225–243 (2006)
- G. Söderlind, Numer. Algorithms, 31, 281–310 (2002)

- Axisymmetric positive streamer in air at atmospheric pressure and 300 K is modelled using 2D FEDM code.
- Square domain has radius and gap distance of 1.25 cm.
- Background electric field is 15 kV/cm.
- Gaussian seed near the powered electrode is introduced to locally enhance the field and initiate the streamer.
- Mesh is refined towards the axis and streamer region (approx. 500000 elements).
- Linear Lagrange elements are used for all the equations.
- Time-step size is constant: $\Delta t = 5$ ps.
- Temporal evolution is followed up to 12 ns (2400 time steps).

z - d	Powered electrode
2 – u	$-\varepsilon_0 \nabla^2 \phi = e_0 (n_{\rm i} - n_{\rm e})$
	$\frac{\partial n_{\rm e}}{\partial t} + \nabla \cdot \mathbf{\Gamma}_{\rm e} = \alpha \mu_{\rm e} E n_{\rm e}$
	$\frac{\partial n_{\rm i}}{\partial t} = \alpha \mu_{\rm e} E n_{\rm e}$
	$n_{\rm i0} = N_0 {\rm e}^{-rac{r^2 + (z-z_0)^2}{\sigma^2}}$
	$N_0 = 5 \times 10^{18} \mathrm{m}^{-3}$
	$\sigma = 0.4 \mathrm{mm}, z_0 = 1 \mathrm{cm}$
	$n_{e0} = 10^{13} \mathrm{m}^{-3}$
z = 0	Grounded electrode
r =	$= 0 \qquad \qquad r = r$

B. Bagheri et al., Plasma Sources Sci. Technol. 27 (2018) 095002

- Axisymmetric positive streamer in air at atmospheric pressure and 300 K is modelled using 2D FEDM code.
- Square domain has radius and gap distance of 1.25 cm.
- Background electric field is 15 kV/cm.
- Gaussian seed near the powered electrode is introduced to locally enhance the field and initiate the streamer.
- Mesh is refined towards the axis and streamer region (approx. 500000 elements).
- Linear Lagrange elements are used for all the equations.
- Time-step size is constant: $\Delta t = 5$ ps.
- Temporal evolution is followed up to 12 ns (2400 time steps).

B. Bagheri et al., Plasma Sources Sci. Technol. 27 (2018) 095002

- Axisymmetric positive streamer in air at atmospheric pressure and 300 K is modelled using 2D FEDM code.
- Square domain has radius and gap distance of 1.25 cm.
- Background electric field is 15 kV/cm.
- Gaussian seed near the powered electrode is introduced to locally enhance the field and initiate the streamer.
- Mesh is refined towards the axis and streamer region (approx. 500000 elements).
- Linear Lagrange elements are used for all the equations.
- Time-step size is constant: $\Delta t = 5$ ps.
- Temporal evolution is followed up to 12 ns (2400 time steps).

B. Bagheri et al., Plasma Sources Sci. Technol. 27 (2018) 095002

- Axisymmetric positive streamer in air at atmospheric pressure and 300 K is modelled using 2D FEDM code.
- Square domain has radius and gap distance of 1.25 cm.
- Background electric field is 15 kV/cm.
- Gaussian seed near the powered electrode is introduced to locally enhance the field and initiate the streamer.
- Mesh is refined towards the axis and streamer region (approx. 500000 elements).
- Linear Lagrange elements are used for all the equations.
- Time-step size is constant: $\Delta t = 5$ ps.
- Temporal evolution is followed up to 12 ns (2400 time steps).

B. Bagheri et al., Plasma Sources Sci. Technol. 27 (2018) 095002

- Axisymmetric positive streamer in air at atmospheric pressure and 300 K is modelled using 2D FEDM code.
- Square domain has radius and gap distance of 1.25 cm.
- Background electric field is 15 kV/cm.
- Gaussian seed near the powered electrode is introduced to locally enhance the field and initiate the streamer.
- Mesh is refined towards the axis and streamer region (approx. 500000 elements).
- Linear Lagrange elements are used for all the equations.
- Time-step size is constant: $\Delta t = 5$ ps.
- Temporal evolution is followed up to 12 ns (2400 time steps).

B. Bagheri et al., Plasma Sources Sci. Technol. 27 (2018) 095002

- Axisymmetric positive streamer in air at atmospheric pressure and 300 K is modelled using 2D FEDM code.
- Square domain has radius and gap distance of 1.25 cm.
- Background electric field is 15 kV/cm.
- Gaussian seed near the powered electrode is introduced to locally enhance the field and initiate the streamer.
- Mesh is refined towards the axis and streamer region (approx. 500000 elements).
- Linear Lagrange elements are used for all the equations.
- Time-step size is constant: $\Delta t = 5$ ps.
- Temporal evolution is followed up to 12 ns (2400 time steps).

B. Bagheri et al., Plasma Sources Sci. Technol. 27 (2018) 095002

Dielectric barrier discharge (DBD) modelling

- Atmospheric-pressure DBD in argon in asymmetric configuration is modelled using 2D FEDM code.
- Electrodes of radius 2 mm are set 1.5 mm apart.
- Grounded electrode (top) is covered by 0.5 mm thick dielectric.
- Pulsed voltage is applied to powered electrode (bottom).
- Gaussian seed near the powered electrode is introduced to locally enhance the field and initiate the streamer.
- Mesh is refined near the streamer region and along the dielectric (approx. 350000 elements).
- Linear Lagrange elements are used for all the equations.
- Adaptive time stepping is used (1 ps $< \Delta t < 100$ ps).
- Temporal evolution is followed up to about 43 ns.

- Atmospheric-pressure DBD in argon in asymmetric configuration is modelled using 2D FEDM code.
- Electrodes of radius 2 mm are set 1.5 mm apart.
- Grounded electrode (top) is covered by 0.5 mm thick dielectric.
- Pulsed voltage is applied to powered electrode (bottom).
- Gaussian seed near the powered electrode is introduced to locally enhance the field and initiate the streamer.
- Mesh is refined near the streamer region and along the dielectric (approx. 350000 elements).
- Linear Lagrange elements are used for all the equations.
- Adaptive time stepping is used (1 ps $< \Delta t < 100$ ps).
- Temporal evolution is followed up to about 43 ns.

$$\begin{aligned} -\varepsilon_{0}\varepsilon_{\mathrm{r}}\nabla^{2}\phi &= \sum_{p}q_{p}n_{p}\\ \frac{\partial n_{p}}{\partial t} + \nabla\cdot\boldsymbol{\Gamma}_{p} &= S_{p}\\ \frac{\partial w_{\mathrm{e}}}{\partial t} + \nabla\cdot\boldsymbol{Q}_{\mathrm{e}} &= -e_{0}\mathbf{E}\cdot\boldsymbol{\Gamma}_{\mathrm{e}} + \widetilde{S}_{\mathrm{e}}\\ \frac{\partial \sigma}{\partial t} &= \sum_{p}q_{p}\boldsymbol{\Gamma}_{p}\cdot\boldsymbol{\nu} \end{aligned}$$

Dielectric barrier discharge (DBD) modelling

- Atmospheric-pressure DBD in argon in asymmetric configuration is modelled using 2D FEDM code.
- Electrodes of radius 2 mm are set 1.5 mm apart.
- Grounded electrode (top) is covered by 0.5 mm thick dielectric.
- Pulsed voltage is applied to powered electrode (bottom).
- Gaussian seed near the powered electrode is introduced to locally enhance the field and initiate the streamer.
- Mesh is refined near the streamer region and along the dielectric (approx. 350000 elements).
- Linear Lagrange elements are used for all the equations.
- Adaptive time stepping is used (1 ps $< \Delta t < 100$ ps).
- Temporal evolution is followed up to about 43 ns.

- FEDM code for automated set-up of the equations is developed.
- The code is verified using benchmarking.
- The challenges in cases where the problem is defined on several subdomains, such as DBDs, could possibly be resolved using mixed-dimensional formulation.
- Handling of electron-energy-dependent and electric-field-dependent coefficients should be further addressed because they can lead to small time-step sizes.

Contact

Leibniz Institute for Plasma Science and Technology

Address: Felix-Hausdorff-Str. 2, 17489 Greifswald Phone: +49 - 3834 - 554 3911, Fax: +49 - 3834 - 554 301 E-mail: aleksandar.jovanovic@inp-greifswald.de, Web: www. leibniz-inp.de