endele

mgis.fenics Part II: Cosserat media in small deformation with mgis.fenics

T. Dancheva⁽¹⁾, U. Alonso⁽²⁾, M. Barton⁽¹⁾, J. Bleyer⁽³⁾, T. Hefler⁽⁴⁾, R. Russo⁽²⁾

- ⁽¹⁾ BCAM Basque Center for Applied Mathematics
- ⁽²⁾ University of the Basque Country

⁽³⁾ Laboratoire Navier UMR 8205 (École des Ponts ParisTech-IFSTTAR-CNRS), France
 ⁽⁴⁾ CEA, DES, IRESNE, DEC, SESC, LSC, Cadarache, France

This project received funding from the European Union's Marie Skłodowska-Curie Actions (MSCA) Innovotive Training Networks (ITN) H2020-MSCA-ITN-2017 under the grant agreement N°764979

AGENDA

- Introduction
- Cosserat media: Motivation
 Model
 Implementation
- Performance
- Conclusion
- Next steps

Introduction

ENABLE H2020 project

This European Training Network actively involves academics and industrial partners in training a new generation of young researchers for the future of **manufacturing**. By developing new solutions for **metallic alloys**, ENABLE proposes a complete rethink of the usual process simulation methods. Innovative **multiscale** (from microscopic to macroscopic scales), and **multi-physics** (strong thermomechanical and microstructural couplings) are addressed.

Cosserat Media - Motivation

Development of an Adiabatic Shear Band
Localization phenomena & prediction of characteristic length and size effect
aim to regularize the model and avoid mesh dependency

Fig.1 2D machining of Ti-6Al-4V - using Third Wave Systems AdvantEdge - Temperature

Fig.2 Chip formation during the machining of grade 316L stainless steel - using Third Wave Systems AdvantEdge -Temperature, courtesy of Sandvik Coromant

Cosserat Media in small deformation - model

- the model was initially introduced in 1909 by the Cosserat brothers [Cosserat 1909]
- Raffaele Russo has been working on formulating a thermodynamically consistent model for small deformation and large deformation [Russo et al. 2020]

Displacement 🔍 Extra degrees of freedom - the rotation of the microstructure $\{u_i, \theta_i\}, \quad i = 1, 2, 3$ Deformation measures, where $\epsilon_{ijk} = \begin{cases} 1, & \text{if } (i,j,k) = (1,2,3), (2,3,1) \text{ or } (3,1,2); \\ -1, & \text{if } (i,j,k) = (3,2,1), (2,1,3) \text{ or } (1,3,2); \\ 0. & \text{otherwise.} \end{cases}$ $\mathbf{e} = \mathbf{u} \otimes \mathbf{\nabla} + \mathbf{e} \cdot \mathbf{\theta}$ \longrightarrow Cosserat deformation tensor $\mathbf{k} = \mathbf{\theta} \otimes \mathbf{\nabla}$ \longrightarrow Cosserat wryness tensor Balance/equilibrium equation: $\int_{\Omega} \left(\mathbf{g} : \mathbf{\dot{e}} + \mathbf{\mu} : \mathbf{\dot{k}} \right) dV = \int_{\Omega} \left(\mathbf{f} \cdot \mathbf{\dot{u}} + \mathbf{c} \cdot \mathbf{\dot{\theta}} \right) dV + \int_{\partial\Omega} \left(\mathbf{t} \cdot \mathbf{\dot{u}} + \mathbf{m} \cdot \mathbf{\dot{\theta}} \right) dS;$ scient stress couple stress body force / couple external surface / couple traction classical stress couple stress body force / couple

Cosserat, Eugene, and François Cosserat. Theorie des corps dédormables. A. Hermann et fils, 1909. Russo, Raffaele, Samuel Forest, and Franck Andrés Girot Mata. "Thermomechanics of Cosserat medium: modeling adiabatic shear bands in metals." Continuum Mechanics and Thermodynamics (2020): 1-20.

Cosserat Media in small deformation - model

Material model for elasto-plasticity

From the Helmholtz free energy and the Clausius-Duhem inequality (2nd thermodynamic law) we can verify the compatibility and derive the following:

- assuming single plastic multiplier we calculate using the consistency condition and the

normality rule:
$$\dot{p} = \frac{\mathbf{n} : \mathbf{\Lambda} : \dot{\mathbf{e}} + \mathbf{n}_c : \mathbf{C} : \dot{\mathbf{k}}}{\frac{\partial A}{\partial p} + \mathbf{n}_c : \mathbf{\Lambda} : \mathbf{n} + \mathbf{n}_c : \mathbf{C} : \mathbf{n}};$$
 $\frac{\partial f}{\partial \mathbf{g}} = \mathbf{n} = \frac{3}{2} \frac{a_1 \mathbf{g}' + a_2 \mathbf{g}'^T}{\sigma_{eq}}$

- Normals to the yield surface in the stress and couple stress spaces $\frac{\partial f}{\partial \mu} = \mathbf{n}_c = \frac{3}{2} \frac{b_1 \mathbf{\mu} + b_2 \mathbf{\mu}^T}{\sigma_{cr}};$
- Equivalent Stress as in [Borst 1991; Lippmann 1969; Mühlhaus and Vardoulakis 1987]

$$\sigma_{\rm eq} = \sqrt{\frac{3}{2}} \left(a_1 \, \boldsymbol{g}' : \boldsymbol{g}' + a_2 \, \boldsymbol{g}' : \boldsymbol{g}'^{\rm T} + b_1 \, \boldsymbol{\mu} : \boldsymbol{\mu} + b_2 \, \boldsymbol{\mu} : \boldsymbol{\mu}^{\rm T} \right);$$

Characteristic length:

$$_{p} = \sqrt{\frac{a}{b}};$$

De Borst, R. E. N. É. "Simulation of strain localization: a reappraisal of the Cosserat continuum." Engineering computations (1991). Lippmann, H. "Eine Cosserat-Theorie des plastischen Fliessens." Acta Mechanica 8.3 (1969): 255-284. Mühlhaus, Hans-Bernd and I. Vardoulakis (1987). "The thickness of shear bands in granular". In: Géotechnique

Cosserat Media Implementation - Glide test

Zset:[1,1,1,1,1,1,4,5,6,6,6,7,7,8,9,10,10,9]

-

Fig.3 Comparison MFront+FEniCS with ZSet and the analytical solution [S.Forest et al.]

Forest, S. and R. Sievert (Jan. 2003). "Elastoviscoplastic constitutive frameworks for generalized continua". In: Acta Mechanica 160.1-2, pp. 71–111.

Cosserat Media Implementation

Fig.4 .mfront file for the Cosserat glide test

 $\sigma_{\rm eq} = \sqrt{\frac{3}{2}} \left(\mathbf{a}_1 \, \mathbf{g}' : \mathbf{g}' + \mathbf{a}_2 \, \mathbf{g}' : \mathbf{g}'^{\rm T} + \mathbf{b}_1 \, \mathbf{\mu} : \mathbf{\mu} + \mathbf{b}_2 \, \mathbf{\mu} : \mathbf{\mu}^{\rm T} \right);$

Cosserat Media Implementation

Fig. 5 Explicit Implementation MFront

Fig.5 .mfront file for the Cosserat glide test - continuation Optimization: converting to an implicit implementation

Cosserat Media Implementation

Cosserat Media Implementation

Performance

ATLAS EDR @ Donostia International Physics Center - Infiniband EDR network

- **37 nodes** with Intel Xeon Platinum 8168 (24 cores per node x 2 threads)
- 8 nodes with Intel Xeon Platinum 8280 (28 cores per node x 2 threads)
- 2x NVIDIA Tesla P40, 1x NVIDIA Tesla P40

Current setup:

- using Singularity container
- using MPICH using the UCX network framework

Fig.8 Strong and weak scaling plot for the glide test

Conclusions

 From the profiling and scaling results we can conclude that the major bottleneck is the resolution of the system of nonlinear equations (quasi Newton line search) using MUMPS as a linear solver

Fig.9 Strong and weak scaling plot for various routines part of the simulation

Next steps

- Increase problem size
- Native installation of the software stack on ATLAS-EDR
- Profiling with EXTRAE for MPI statistics, DCRAB for node statistics
- Exploring other linear solvers (and nonlinear)
- Implicit scheme implementation
- Porting to dolfin-x
- Further HPC analysis and code optimizations
- Implementation of the full thermodynamically consistent Cosserat model in Large

deformation - elasto viscoplasticity

Questions

Thank you for your attention!

