
External operators in UFL and Firedrake

Nacime Bouziani David A. Ham
March 22-26, 2021

FEniCS 2021
Department of Mathematics, Imperial College London

1

PDEs are not enough in many cases !

We often need terms not
directly expressible in the
vector calculus sense !

2

Implicit constitutive laws : Glen’s flow law

Let’s consider the following standard model for isothermal flow
where we have to find (u, p, τ) ∈ V × Q × X with appropriate
function spaces such that ∀ (w , φ) ∈ V × Q we have :



∫
φ∇ · u = 0 incompressibility∫

−w · ∇p + (∇ · τi ,j) · w − f · w = 0 stress balance

1
2
(
∇u +∇uT

)
= A|τ |2τi ,j Glen flow law

(1)

where f =
(

0
−ρg

)
refers to the gravity force and A ∈ R.

3

A Firedrake example: Pointwise solve operator
1 import sympy as sp
2 . . .
3 # De f i n e the f u n c t i o n s p a c e s
4 V1 = VectorFunct ionSpace (mesh , ”CG” , 2)
5 V2 = Funct ionSpace (mesh , ”CG” , 1)
6 V3 = TensorFunct ionSpace (mesh , ”DG” , 2)
7 . . .
8 # Mixed f u n c t i o n space
9 W = MixedFunctionSpace ((V1 , V2))

10 w, p h i = T e s t F u n c t i o n s (W)
11 s o l n = Funct ion (W)
12 u , p = s p l i t (s o l n)
13 . . .
14 A = Constant (1 .)
15 f = Funct ion (V1) . i n t e r p o l a t e (a s v e c t o r ([0 , −rho ∗g]))
16 . . .
17
18 ps = p o i n t s o l v e (lambda tau , eps , A : A∗ sp . M a t r i x (tau)∗ sp . M a t r i x (tau) . norm ()∗∗2 − eps ,
19 f u n c t i o n s p a c e=V3 ,
20 s o l v e r p a r a m s={ ' x0 ' : u0 , ' m a x i t e r ' : 2 5 , ' t o l ' : 1 . e−7})
21 tau = ps (sym (grad (u)) , A)
22 F = d i v (w)∗ p∗dx − i n n e r (grad (w) , tau)∗ dx − p h i ∗ d i v (u)∗ dx − i n n e r (f , w)∗ dx
23 . . .
24 # S o l v e
25 s o l v e (F==0, s o l n , bcs = . . .)

4

Glen’s flow law: velocity field

τ = E(u) A|τ |2τi ,j = E(u)

with E(u) = 1
2

(
∇u +∇uT

)

5

Framework

Let’s consider the function space V and the parameter space M,
which can be a function space or a subspace of Rm for m ∈ N
depending on the applications. We introduce the so-called external
operator

N : V ×M → X (2)

where X is the external operator space, it is a function space. N is
external in the sense that it can be defined externally with
respect to Firedrake.

6

Assembly

Let N be an ExternalOperator,

F (u,m,N(u,m); v) = 0 ∀v ∈ V ′

Assembly steps

. . .
uX

h ,mX
h = i n t e r p o l a t e (uh , X) , i n t e r p o l a t e (mh , X)

. . .
N̂ = N(uX

h , mX
h) . assemble ()

. . .
assemble (F (uh, mh, N̂ ; vh))

N̂ gets evaluated inside the operation of evaluating F (uh,mh, N̂ ; vh) !

7

Assembly

Let N be an ExternalOperator,

F (u,m,N(u,m); v) = 0 ∀v ∈ V ′

Assembly steps

. . .
uX

h ,mX
h = i n t e r p o l a t e (uh , X) , i n t e r p o l a t e (mh , X)

. . .
N̂ = N(uX

h , mX
h) . assemble ()

. . .
assemble (F (uh, mh, N̂ ; vh))

N̂ gets evaluated inside the operation of evaluating F (uh,mh, N̂ ; vh) !

7

Differentiation rules

• Need to compute dF
du , we have: dF

du = ∂F
∂u + ∂F

∂N
∂N
∂u

• Need to extend UFL to handle : ∂F
∂N and ∂N

∂u

• The external operator subclass is responsible for computing ∂N
∂u :

SymPy, UFL, PyTorch...

F (u,N(u); v)

N(u)

N̂

d
d u dF (u,N(u),N ′(u;û);û,v)

d u

N(u) N ′(u; û)

N̂ N̂ ′

8

Differentiation rules

• Need to compute dF
du , we have: dF

du = ∂F
∂u + ∂F

∂N
∂N
∂u

• Need to extend UFL to handle : ∂F
∂N and ∂N

∂u

• The external operator subclass is responsible for computing ∂N
∂u :

SymPy, UFL, PyTorch...

F (u,N(u); v)

N(u)

N̂

d
d u dF (u,N(u),N ′(u;û);û,v)

d u

N(u) N ′(u; û)

N̂ N̂ ′

8

New Firedrake subclasses of ExternalOperator :

1. Pointwise solve operator : An operator that handles pointwise
nonlinear relationships. More precisely, the pointwise solve
operator is applied on a given UFL expression and provides
the root of the function(al) defined by this expression.

2. Neural Network : The neural network operator takes an input
and returns the output of the associated neural network
model.

3. Layer potentials : This single (resp. double) layer potential
operator computes the single (resp. double) layer potential
(see Nonlocal UFL’s talk (B. Sepanski) Thursday -
15:00−16:30 GMT).

9

Example: PDE-constrained optimization

Let N1 and N2 be two external operators,

min
m∈M

J(u,m,N1(u,m)) (3)

subject to F (u,m,N2(u,m); v) = 0 ∀v ∈ V ′ (4)

where J : V ×M → R is the objective function, m ∈ M the control
variable, and u ∈ V is the weak solution of the parametrised PDE.

⇒ Key objective : Compute dJ
dm

10

Adjoint equation

Using chain rule we get

dJ
dm =− λ∗

(
∂F
∂m + µ∗1

)
+ µ∗2 + ∂J

∂m
(5)

λ∗, µ∗1 and µ∗2 are the adjoint variables, they are obtained by the
following relations:


(
∂F
∂u + ∂F

∂N2

∂N2
∂u

)∗
λ = ∂J

∂u

∗
+ ∂N1

∂u

∗ ∂J
∂N1

∗

µ1 = ∂N2
∂m

∗ ∂F
∂N2

∗
, µ2 = ∂N1

∂m

∗ ∂J
∂N1

∗ (6)

⇒ Adjoint computation depends on ∂Ni
∂u
∗ and ∂Ni

∂m
∗ for i = 1, 2

11

Conclusion

In a nutshell:

1. The ExternalOperator project enables you to include any operators provided that you can define how the
operator and its derivatives are evaluated. That can be anything that can be evaluated (e.g. Gaussian
process, FFT, external libraries...)

2. Some classes of operator have already been implemented: PointsolveOperator, PytorchOperator,
SingleLayerPotential and DoubleLayerPotential.

3. External operators play well with Pyadjoint, i.e. you can add in these operators in a PDE or
PDE-constrained optimisation problem.

4. For neural networks, coupling with PyTorch to get derivative with respect to inputs/weights. Extensions to
Tensorflow are straightforward.

5. External operators play well with matrix free methods.

What are the practical takeaways ?

â To build your own external operator: subclass the AbstractExternalOperator class in firedrake and equip
your operator with an evaluate method (i.e. how your operator and its derivatives are evaluated).

â Code accessible via the pointwise-adjoint-operator firedrake branch

â Related talks:
• External operators depend on dual spaces (see I. Marsden talk: Tuesday - 13:00−14:40 GMT).
• LayerPotential operators (see B. Sepanski talk: Thursday - 15:00−16:30 GMT).

12

Conclusion

In a nutshell:

1. The ExternalOperator project enables you to include any operators provided that you can define how the
operator and its derivatives are evaluated. That can be anything that can be evaluated (e.g. Gaussian
process, FFT, external libraries...)

2. Some classes of operator have already been implemented: PointsolveOperator, PytorchOperator,
SingleLayerPotential and DoubleLayerPotential.

3. External operators play well with Pyadjoint, i.e. you can add in these operators in a PDE or
PDE-constrained optimisation problem.

4. For neural networks, coupling with PyTorch to get derivative with respect to inputs/weights. Extensions to
Tensorflow are straightforward.

5. External operators play well with matrix free methods.

What are the practical takeaways ?

â To build your own external operator: subclass the AbstractExternalOperator class in firedrake and equip
your operator with an evaluate method (i.e. how your operator and its derivatives are evaluated).

â Code accessible via the pointwise-adjoint-operator firedrake branch

â Related talks:
• External operators depend on dual spaces (see I. Marsden talk: Tuesday - 13:00−14:40 GMT).
• LayerPotential operators (see B. Sepanski talk: Thursday - 15:00−16:30 GMT).

12

Conclusion

In a nutshell:

1. The ExternalOperator project enables you to include any operators provided that you can define how the
operator and its derivatives are evaluated. That can be anything that can be evaluated (e.g. Gaussian
process, FFT, external libraries...)

2. Some classes of operator have already been implemented: PointsolveOperator, PytorchOperator,
SingleLayerPotential and DoubleLayerPotential.

3. External operators play well with Pyadjoint, i.e. you can add in these operators in a PDE or
PDE-constrained optimisation problem.

4. For neural networks, coupling with PyTorch to get derivative with respect to inputs/weights. Extensions to
Tensorflow are straightforward.

5. External operators play well with matrix free methods.

What are the practical takeaways ?

â To build your own external operator: subclass the AbstractExternalOperator class in firedrake and equip
your operator with an evaluate method (i.e. how your operator and its derivatives are evaluated).

â Code accessible via the pointwise-adjoint-operator firedrake branch

â Related talks:
• External operators depend on dual spaces (see I. Marsden talk: Tuesday - 13:00−14:40 GMT).
• LayerPotential operators (see B. Sepanski talk: Thursday - 15:00−16:30 GMT).

12

