

Coupling of thermomechanics with electromagnetism in FEniCS

Bilen Emek Abali

Associate Professor in Solid Mechanics Department of Materials Science and Engineering Uppsala University

March 25, 2021, Cambridge

Thermomechanics and electromagnetism

Challenges in theory and implementation

- Coupling of electromagnetism and thermomechanics, ABRAHAM-MINKOWSKI debate
- Thermodynamically sound derivation of all constitutive equations using MINKOWSKI momentum
- ► Balances of mass, momentum, energy, electric charge, and FARADAY law, jump conditions

Thermomechanics and electromagnetism

Challenges in theory and implementation

- Coupling of electromagnetism and thermomechanics, ABRAHAM-MINKOWSKI debate
- Thermodynamically sound derivation of all constitutive equations using MINKOWSKI momentum
- ► Balances of mass, momentum, energy, electric charge, and FARADAY law, jump conditions

- Numerical method depends on the chosen gauge conditions
- Jump conditions to be implemented as terms in the variational formulation rather than element formulation
- Monolithic computation by using LORENZ gauge and jump conditions

Implementation

Solving the weak form by using open-source packages:

- ► CAD in Salome
- Mesh via NetGen in Salome
- ► Code in Python
- Assembly, linearization, solving via FEM in space and FDM in time by FEniCS
- Visualization in ParaView

Implementation

Simulation of multiphysics applications, FEM in space, FDM in time

- Elastostatics
- ► Nonlinear elasticity
- Plasticity
- Linear and nonlinear fluid dynamics
- ► Fluid-structure interaction
- Thermomechanics
- Electromagnetism
- Thermoelectric coupling
- Piezoelectricity
- Magnetohydrodynamics

Verification of the method

- Thermodynamically sound derivation of all constitutive equations in electromagnetism and thermomechanics
- Computation of displacement, *u*, and magnetic potential, *A*, such that magnetic flux, *B*
- Analytical solution for verifying the novel numerical implementation using LORENZ gauge and jump conditions

BEA and F. A. Reich. Continuum Mechanics and Thermodynamics 32.3 (2020), pp. 693-708.

BEA and F. A. Reich. Computer Methods in Applied Mechanics and Engineering 319 (2017), pp. 567-595.

Multiphysics in electronics, transistor on a board

- Coupled constitutive equations in electromagnetism and thermomechanics
- Monolithic computation of displacement, *u*, temperature, *T*, electric potential, *φ*, magnetic potential, *A*
- Realistic Mini-MELF geometry and comparison to reduced order models

BEA and T. I. Zohdi. Journal of Computational Electronics 17.2 (2018), pp. 625-636.

Thermal damage in lightning

BEA and T. I. Zohdi. Computational Mechanics 65.1 (2020), pp. 149-158.

Bilen Emek Abali, Thermomechanics and electromagnetism, 25.03.2021

Thermal damage in lightning

BEA and T. I. Zohdi. Computational Mechanics 65.1 (2020), pp. 149-158.

Lifetime estimation in fatigue crack growth

- Plasticity, thermodynamics, and electromagnetism by using experimentally determined material parameters
- Experimental validation of results
- COFFIN-MANSON type fatigue related damage by using accumulated plastic strain

BEA, W. H. Müller, H. Walter, O. Wittler, and M. Schneider-Ramelow. GMM-Facbericht, DVS 340 (2018), pp. 174-179.

BEA. Mechanics of Advanced Materials and Modern Processes 3.1 (2017), pp. 1-11

Piezoceramic fan under large displacement

BEA and A. F. Queiruga. Journal of Computational Physics 394 (2019), pp. 200-231.

Magnetorheological elastomer transducer

BEA and A. F. Queiruga. Journal of Computational Physics 394 (2019), pp. 200-231.

Multiphysics in batteries, microscale computations

BEA. "Modeling mechanochemistry in Li-ion batteries". In: Scientific Computing in Electrical Engineering. Ed. by G. Nicosia and V. Romano. Vol. 32. Mathematics in Industry. Springer Nature, Cham, 2020. Chap. 8, pp. 79–91.

What computations we can do?

- Solving coupled and nonlinear partial differential equations
- ▶ Thermomechanics and electromagnetism in solids and mixtures
- ► Reversible phenomena
 - Piezoelectricity
 - Pyroelectricity
 - Magnetothermal coupling
 - Electromagnetic coupling
- ► Irreversible phenomena
 - Thermoelectric coupling (Peltier elements)
 - Plasticity and damage

